Multiplication of Algebraic Fractions

To solve the problems on multiplication of algebraic fractions we will follow the same rules that we already learnt in multiplication of fractions in arithmetic.

From multiplication of fractions we know,

Product of two or more fractions = \(\frac{Product of numerators}{Product of denominators}\)

In algebraic fractions, the product of two or more fractions can be determined in the same way i.e.

Product of two or more fractions = \(\frac{Product of numerators}{Product of denominators}\).


1. Determine the product of the following algebraic fractions:

(i) \(\frac{m}{n} \times \frac{a}{b}\)

Solution:

\(\frac{m}{n} \times \frac{a}{b}\)

=  \(\frac{m   \cdot    a}{n   \cdot    b}\)

= \(\frac{am}{bn}\)


(ii) \(\frac{x}{x  +  y} \times \frac{y}{x  -  y}\)

Solution:

\(\frac{x}{x  +  y} \times \frac{y}{x  -  y}\)

= \(\frac{x  \cdot  y}{(x  +  y)  \cdot   (x  -  y)}\)

= \(\frac{xy}{x^{2}  -  y^{2}}\)


2. Find the product of the algebraic fractions in the lowest form: \(\frac{m}{p  +  q} \times \frac{m}{n} \times \frac{n(p  -  q)}{m(p  +  q)}\)

Solution:

\(\frac{m}{p  +  q} \times \frac{m}{n} \times \frac{n(p  -  q)}{m(p  +  q)}\)

 = \(\frac{m  \cdot  m  \cdot  n(p  -  q)}{(p  +  q)  \cdot  n  \cdot  m(p  +  q)}\)

= \(\frac{m^{2}n(p  -  q)}{mn(p  +  q)^{2}}\)

Here the numerator and denominator have a common factor mn, so by dividing the numerator and denominator of the product by mn, the product in the lowest form will be \(\frac{m (p  -  q)}{(p  +  q)^{2}}\).


3. Find the product and express in the lowest form: \(\frac{x(x  +  y)}{x  -  y} \times \frac{x  -  y}{y(x  +  y)} \times \frac{x}{y}\)

Solution:

\(\frac{x(x  +  y)}{x  -  y} \times \frac{x  -  y}{y(x  +  y)} \times \frac{x}{y}\)

= \(\frac{x(x  +  y)  \cdot  (x  -  y)  \cdot  x}{(x  -  y)  \cdot  y(x  +  y)  \cdot  y}\)

= \(\frac{x^{2}(x  +  y) (x  -  y)}{y^{2}(x  +  y) (x  -  y)}\)

Here, the common factor in the numerator and denominator is (x + y) (x – y). If the numerator and denominator are divided by this common factor, the product in the lowest form will be \(\frac{x^{2}}{y^{2}}\).


4. Find the product of the algebraic fraction: \(\left ( \frac{5a}{2a  -  1} - \frac{a  -  2}{a} \right ) \times \left ( \frac{2a}{a  +  2} - \frac{1}{a  +  2}\right )\)

Solution:

\(\left ( \frac{5a}{2a  -  1} - \frac{a  -  2}{a} \right ) \times \left ( \frac{2a}{a  +  2} - \frac{1}{a  +  2}\right )\)

Here, the L.C.M. of the denominators of the first part is a(2a – 1) and the L.C.M. of the denominators of the second part is (a + 2)

Therefore,  \(\left \{\frac{5a  \cdot  a}{(2a  -  1)  \cdot  a} - \frac{(a  -  2)  \cdot  (2a  -  1)}{a  \cdot  (2a  -  1)} \right \} \times \left ( \frac{2a}{a  +  2} - \frac{1}{a  +  2}\right )\)

= \( \{ \frac{5a^{2}}{a(2a  -  1)} - \frac{(a  -  2)(2a  -  1)}{a(2a  -  1)} \} \times \left ( \frac{2a}{a  +  2} - \frac{1}{a  +  2}\right )\)

= \(\frac{5a^{2} - (a  -  2)(2a  -  1)}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{5a^{2}  -  (2a^{2}  -  5a  +  2)}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{5a^{2}  -  2a^{2}  +  5a  -  2}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{3a^{2}  +  5a  -  2}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{3a^{2}  +  6a  -  a  -  2}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{3a^{2}  +  6a  -  a  -  2}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{3a (a  +  2) - 1(a  +  2)}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{(a  +  2)(3a  -  1)}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{(a  +  2)(3a  -  1)(2a  -  1)}{a(2a  -  1)(a  +  2)}\)

Here, the common factor in the numerator and denominator is (x + 2) (2x - 1). If the numerator and denominator are divided by this common factor, the product in the lowest form will be

= \(\frac{(3a  -  1)}{a}\)







8th Grade Math Practice

From Multiplication of Algebraic Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Yesterday, Today and Tomorrow | Sequence of the Week-days

    Nov 25, 24 01:18 AM

    Practice the worksheet on yesterday, today and tomorrow, the questions are based on the sequence of the week-days, their names and order. We know, the present day is today, the day before today

    Read More

  2. Yesterday, Today and Tomorrow | Name of each Day of the Week

    Nov 25, 24 01:09 AM

    We will learn the relation between yesterday, today and tomorrow. There are seven days in a week. We know the name of each day of the week. Sunday is known as the first day of the week.

    Read More

  3. The Story about Seasons | Spring | Summer | Autumn | Winter

    Nov 25, 24 12:48 AM

    The Four Seasons
    Kids let’s enjoy the story about seasons. Here we will discuss about the four seasons and the duration. Some months are too hot and some are too cold. The period of hot months is called the hot

    Read More

  4. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Nov 25, 24 12:17 AM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 24, 24 11:01 PM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More