We will discuss here about the process of Multiplication of a matrix by a number.
The multiplication of a matrix A by a number k gives a matrix of the same order as A, in which all the elements are k times the elements of A.
Example:
Let A = \(\begin{bmatrix} 10 & 5\\ -3 & -7 \end{bmatrix}\) and B = \(\begin{bmatrix} -2 & 9\\ 0 & 3\\ -1 & 5 \end{bmatrix}\)
Then, kA = k\(\begin{bmatrix} 10 & 5\\ -3 & -7 \end{bmatrix}\)
= \(\begin{bmatrix} 10k & 5k\\ -3k & -7k \end{bmatrix}\) and
kB = k\(\begin{bmatrix} -2 & 9\\ 0 & 3\\ -1 & 5 \end{bmatrix}\)
= \(\begin{bmatrix} -2k & 9k\\ 0 & 3k\\ -1k & 5k \end{bmatrix}\)
Similarly,
\(\begin{bmatrix} a & b\\ c & d \end{bmatrix}\) = \(\frac{1}{k}\)\(\begin{bmatrix} ka & kb\\ kc & kd \end{bmatrix}\).
Solved examples on Multiplication of a Matrix by a Number
(Scalar Multiplication):
1. If A = \(\begin{bmatrix} 10 & -9\\ -1 & 4 \end{bmatrix}\), find 4A.
Solution:
4A = 4\(\begin{bmatrix} 10 & -9\\ -1 & 4 \end{bmatrix}\)
= \(\begin{bmatrix} 4 × 10 & 4 × (-9)\\ 4 × (-1) & 4 × 4 \end{bmatrix}\)
= \(\begin{bmatrix} 40 & -36\\ -4 & 16 \end{bmatrix}\)
2. If M = \(\begin{bmatrix} 2 & -3\\ -4 & 5 \end{bmatrix}\), find -5A.
Solution:
-5M = -5\(\begin{bmatrix} 2 & -3\\ -4 & 5 \end{bmatrix}\)
= \(\begin{bmatrix} (-5) × 2 & (-5) × (-3)\\ (-5) × (-4) & (-5) × 5 \end{bmatrix}\)
= \(\begin{bmatrix} -10 & 15\\ 20 & -25 \end{bmatrix}\)
From Multiplication of a Matrix by a Number to HOME
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Nov 23, 24 03:45 PM
Nov 23, 24 03:14 PM
Nov 23, 24 02:51 PM
Nov 23, 24 12:22 AM
Nov 22, 24 12:34 AM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.