Method of Cross Multiplication

The next method of solving linear equations in two variables that we are going to learn about is method of cross multiplication.

Let us see the steps followed while soling the linear equation by method of cross multiplication:

Assume two linear equation be

 A1 x + B1y + C= 0, and

A2x + B2y + C= 0.

The coefficients of x are: Aand  A2.

The coefficients of y are: B1 and B2.

The constant terms are: C1 and  C2.

To solve the equations in a simplified way, we use following table:

Method of Cross Multiplication

\(\frac{x}{B_{1}C_{2} - B_{2}C_{1}} = \frac{y}{C_{1}A_{2} - C_{2}A_{1}} = \frac{1}{A_{1}B_{2} - A_{2}B_{1}}\)

Equating one another we find the value of x and y of the given equations.


Let us solve some examples based upon this concept:

1. Solve for ‘x’ and ‘y’:

 3x + 2y + 10 = 0, and

 4x + 5y + 20 = 0.

Solution:

Let us solve the given equations using method of cross multiplication:

The coefficients of x are 3 and 4.

The coefficients of y are 2 and 5.

The constant terms are 10 and 20.

The table can be formed as:

Method of Cross Multiplication

\(\frac{x}{B_{1}C_{2} - B_{2}C_{1}} = \frac{y}{C_{1}A_{2} - C_{2}A_{1}} = \frac{1}{A_{1}B_{2} - A_{2}B_{1}}\)

On substituting respective values, we get:

\(\frac{x}{2 × 20 - 5 × 10} = \frac{y}{10 × 4 - 20 × 3} = \frac{1}{3 × 5 - 4 × 2}\)

\(\frac{x}{-10} = \frac{y}{-20} = \frac{1}{7}\)

Equating x term with constant term, we get x = -\(\frac{10}{7}\).

On equating y term with constant y term, we get y = -\(\frac{20}{7}\).

2. Solve for x and y:

6x + 5y + 15 = 0, and

3x + 4y + 9 = 0.

Solution:

Let us solve the given equation using method of cross multiplication:

The coefficients of x are 6 and 3.

The coefficients of y are 5 and 4.

The constant values are 15 and 9.

The table can be formed as:

Method of Cross Multiplication

\(\frac{x}{B_{1}C_{2} - B_{2}C_{1}} = \frac{y}{C_{1}A_{2} - C_{2}A_{1}} = \frac{1}{A_{1}B_{2} - A_{2}B_{1}}\)

On substituting respective values, we get;

\(\frac{x}{5 × 9 - 4 × 15} = \frac{y}{15 × 3 - 9 × 6} = \frac{1}{6 × 4 - 3 × 5}\)

\(\frac{x}{-15} = \frac{y}{-9} = \frac{1}{9}\)

On equating x term with constant term, we get x= \(\frac{-15}{9}\), i.e., x = -\(\frac{5}{3}\).

On equating y term with constant term we get, y = \(\frac{-9}{9}\)

 = -1.


3. Solve for x and y:

5x + 6y + 10 = 0, and

2x + 9y = 0.

Solution:

The coefficients of x are 5 and 2.

The coefficients of y are 6 and 9.

The constant terms are 10 and 0.

The table can be formed as:

Method of Cross Multiplication

On solving, we get:

\(\frac{x}{B_{1}C_{2} - B_{2}C_{1}} = \frac{y}{C_{1}A_{2} - C_{2}A_{1}} = \frac{1}{A_{1}B_{2} - A_{2}B_{1}}\)

On substituting respective values, we get;

\(\frac{x}{6 × 0 - 9 × 10} = \frac{y}{10 × 2 - 0 × 5} = \frac{1}{5 × 9 - 2 × 6}\)

\(\frac{x}{-90} = \frac{y}{20} = \frac{1}{33}\)

On equating x term with constant term, we get x = \(\frac{-90}{33}\) = -\(\frac{30}{11}\).

On equating y term with constant term we get, y = \(\frac{20}{33}\).


4. Solve for x and y;

x + y + 10 = 0.

3x + 7y + 2 = 0.

Solution:

The coefficients of x are 1 and 3.

The coefficients of y are 1 and 7.

The constant terms are 10 and 2.

The table can be formed as:

Method of Cross Multiplication

On solving this table we get,

\(\frac{x}{B_{1}C_{2} - B_{2}C_{1}} = \frac{y}{C_{1}A_{2} - C_{2}A_{1}} = \frac{1}{A_{1}B_{2} - A_{2}B_{1}}\)

On substituting respective values, we get;

\(\frac{x}{1 × 2 - 7 × 10} = \frac{y}{10 × 3 - 2 × 1} = \frac{1}{1 × 7 - 3 × 1}\)

\(\frac{x}{-68} = \frac{y}{28} = \frac{1}{4}\)

On equating x term with the constant term, we get; x = \(\frac{-68}{4}\) = -17

On equating y term with the constant, we get; y = \(\frac{28}{4}\) = 7





9th Grade Math

From Method of Cross Multiplication to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Yesterday, Today and Tomorrow | Sequence of the Week-days

    Nov 25, 24 01:18 AM

    Practice the worksheet on yesterday, today and tomorrow, the questions are based on the sequence of the week-days, their names and order. We know, the present day is today, the day before today

    Read More

  2. Yesterday, Today and Tomorrow | Name of each Day of the Week

    Nov 25, 24 01:09 AM

    We will learn the relation between yesterday, today and tomorrow. There are seven days in a week. We know the name of each day of the week. Sunday is known as the first day of the week.

    Read More

  3. The Story about Seasons | Spring | Summer | Autumn | Winter

    Nov 25, 24 12:48 AM

    The Four Seasons
    Kids let’s enjoy the story about seasons. Here we will discuss about the four seasons and the duration. Some months are too hot and some are too cold. The period of hot months is called the hot

    Read More

  4. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Nov 25, 24 12:17 AM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 24, 24 11:01 PM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More