Magic Square

In a magic square, every row, column and each of the diagonals add up to the same total.

Here is a magic square. The numbers 1 to 9 are placed in the small squares in such a way that no number is repeated and the sum of the three digits column-wise, row-wise and diagonally is equal to 15.

This is a 3 by 3 magic square.

Math Magic Square








A. This is a magic square.

All 3 rows add upto 15.

All 3 columns add upto 15.

The 2 diagonals add upto 15.

There are 8 lines, each totaling 15.

In this magic square, numbers from 1 to 9 are used. In one of these lines, the numbers increase by 1. 

The diagonal is 4, 5, 6. 

Look carefully and find in which line does the numbers increase by (a) 2 (b) 3 

Similar magic squares are also made.

Magic Square

There are the examples of magic squares formed by the numbers 5, 6, 7, 8, 9, 10, 11, 12 and 13 having the diagonally, row-wise and column-wise sum of 27

Magic Square Problem
Magic Square Math


In the same pattern other magic squares may be formed.

(i) Numbers are 2, 3, 4, 5, 6, 7, 8, 9 and 10, Sum = 18

(ii) Numbers are 3 to 11 and sum = 21

(iii) Numbers are 4 to 12 and sum = 24

(iv) Numbers are 6 to 14 and sum = 30

(v) Numbers are 7 to 15 and sum = 33

(vi) Numbers are 8 to 16 and sum = 36

(vii) Numbers are 9 to 17 and sum = 39


Magic squares having 4 or more rows and columns may be made.


B. This is a 4 by 4 magic square. Find out the missing numbers. What does each line add up to?

Missing Numbers Magic Square










C. This is a 5 by 5 magic square.

It has 5 rows and 5 columns.

Find out the line total.

Check if each of the 5 rows, 5 columns and 2 diagonals add up to the same number.

Check the Magic Square












At the centre of this 5 by 5 magic square is a 3 by 3 square. Draw this 3 by 3 square on a sheet of paper.

Copy the number in each box.

Is this 3 by 3 square A a magic square?

What is the line total of each row and column?

What is the total of the two diagonals? Do the numbers increase by 1 in any of the lines? Color that line.

Use different colors to shade lines where the numbers increase by (a) 2 (b) 3. 


D. This is a 6 by 6 magic square. 

Find the line total. 

Check that some of the rows and columns add up to this number.

6 by 6 Magic Square Solve














Notice that the thick lines divide the square into 9 smaller squares.

Each small square has 4 numbers.

What do you notice about the 4 numbers in each of this small square? 

Add up the 4 numbers in each of the 9 squares.

Write your answer in a 3 by 3 square.

The first two squares haves been done for you.

How to Solve Magic Square









(a) 29 + 30 + 31 + 32 = 122

(b) 1 + 2 + 3 + 4 = 10

(c) 21 + 22 +23 + 24 = ____

(d) 9 + 10 + 11 + 12 = ____

(e) 17 + 18 + 19 + 20 = ____

(f) 25 + 26 + 27 + 28 = ____

(g) 13 + 14 + 15 + 16 = ____

(h) 33 + 34 + 35 + 26 = ____

(i) 5 + 6 + 7 + 8 = ____

Now add up the numbers in each row, column, diagonal and confirm that this too is a magic square!



Observe the number pattern

1 ∙ 1 ∙ 2 ∙ 3 ∙ 5 ∙ 8 ∙ 13 ∙ 21 ∙ 34

Every number after the second number is equal to the sum of the two preceding numbers.

This type of relationship is called the Fibonacci sequence. It was developed by Leonardo Fibonacci of Italy around the year 1200.

We can observe numbers from the Fibonacci sequence in various places in nature; petals of flowers; leaves of plants; scales of pineapples and nodes of a pine cone.



Observe the number pattern

1 ∙ 3 ∙ 6 ∙ 10 ∙ 15 ∙ 21

This number sequence is made up of triangular number.

The sequence begins with 1. Then

1 + 2 = 3

3 + 3 = 6

6 + 4 = 10

10 + 5 = 15

15 + 6 = 21


There is another interesting fact.

You can take a number of 3 digits as 356.

If we write after it the same number of three digits we get 356356.

This number is divided by 7, 11 and 13.

479479 is also divided by 7, 11 and 13.

Similarly, other numbers may be made which would be divisible by 7, 11 and 13.

Related Concept

Patterns and Mental Mathematics

Counting Numbers in Proper Pattern

Odd Numbers Patterns

Three Consecutive Numbers

Number Formed by Any Power

Product of The Number

Magic Square

Square of a Number

Difference of The Squares

Multiplied by Itself

Puzzle

Patterns

Systems of Numeration


4th Grade Math Activities

From Magic Square to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Counting Numbers from 1 to 50 | Match the Number | Missing Numbers

    Apr 04, 25 03:46 PM

    Math Coloring Pages on Counting Number Oredr
    In counting numbers from 1 to 50, recognize the numbers, count and then join the numbers in the correct number order. Here we mainly need eye-hand coordination to draw the picture and maintain the num

    Read More

  2. Counting Eleven to Twenty with Numbers and Words |Numbers from 11 - 20

    Apr 04, 25 03:21 PM

    Counting eleven to twenty with numbers and words are explained below. One ten and one more is eleven. Eleven comes after ten. One ten and two more is twelve. Twelve comes after eleven.

    Read More

  3. 5th Grade BODMAS Rule Worksheet | PEMDAS | Order of operations|Answers

    Apr 03, 25 03:11 PM

    5th Grade BODMAS Rule Worksheet
    In 5th Grade BODMAS Rule Worksheet you will get different types of problems on mathematical expressions involving different operations, mathematical expression with 'brackets' and 'of' and simplifying…

    Read More

  4. Worksheet on Simplification | Simplify Expressions | BODMAS Questions

    Apr 03, 25 02:58 PM

    Worksheet on Simplification
    In worksheet on simplification, the questions are based in order to simplify expressions involving more than one bracket by using the steps of removal of brackets. This exercise sheet

    Read More

  5. Divisible by 2 Video |Test of Divisibility by 2 Trick| Rules| Examples

    Apr 03, 25 10:25 AM

    Divisible by 2
    A number is divisible by 2 if the digit at unit place is either 0 or multiple of 2. So a number is divisible by 2 if digit at its units place is 0, 2, 4, 6 or 8.

    Read More