Lowest Form of a Rational Number

What is the lowest form of a rational number?

A rational number a/b is said to be in the lowest form or simplest form if a and b have no common factor other than 1.

In other words, a rational number \(\frac{a}{b}\) is said to be in the simplest form, if the HCF of a and b is 1, i.e., a and b are relatively prime.

The rational number \(\frac{3}{5}\) is in the lowest form, because 3 and 5 have no common factor other than 1. However, the rational number \(\frac{18}{60}\) is not in the lowest form, because 6 is a common factor to both numerator and denominator.


How to convert a rational number into lowest form or simplest form?

Every rational number can be put in the lowest form using the following steps:

Step I:  Let us obtain the rational number \(\frac{a}{b}\).

Step II: Find the HCF of a and b.

Step III: If k = 1, then \(\frac{a}{b}\) is in lowest form.

Step IV: If k ≠ 1, then \(\frac{a  ÷  k}{b  ÷  k}\) is the lowest form of a/b.

The following examples will illustrate the above procedure to convert a rational number into lowest form.

1. Determine whether the following rational numbers are in the lowest form or not.

(i) \(\frac{13}{81}\)      

Solution:

We observe that 13 and 81 have no common factor, i.e., their HCF is 1.

Therefore, \(\frac{13}{81}\) is the lowest form of a rational number.      


(ii) \(\frac{72}{960}\)

Solution:

We have, 24 = 2 × 2 × 2 × 3 × 3 and 320 = 2 × 2 × 2 × 2 × 2 × 2 × 3 × 5

Thus, HCF of 72 and 960 is 2 × 2 × 2 × 3 = 24.

Therefore, \(\frac{72}{960}\) is not in the lowest form.

 

2. Express each of the following rational numbers to the lowest form.

(i) \(\frac{18}{30}\)  

Solution:

We have,

18 = 2 × 3 × 3 and 30 = 2 × 3 × 5

Therefore, HCF of 18 and 30 is 2 × 3 = 6.

So, \(\frac{18}{30}\) is not in lowest form.

Now, dividing numerator and denominator of \(\frac{18}{30}\) by 6, we get

\(\frac{18}{30}\) = \(\frac{18  ÷  6}{30  ÷  6}\) = \(\frac{3}{5}\)

Therefore, \(\frac{3}{5}\) is the lowest form of a rational number \(\frac{18}{30}\).

 

(ii) \(\frac{-60}{72}\)     

Solution:

We have

60 = 2 × 2 × 3 × 5 and 72 = 2 × 2 × 2 × 3 × 3

Therefore, HCF of 60 and 72 is 2 × 2 × 3 = 12

So, \(\frac{-60}{72}\) is not in lowest form.

Dividing numerator and denominator of \(\frac{-60}{72}\) by 12, we get

\(\frac{-60}{72}\) = \(\frac{(-60)  ÷  12}{72  ÷  12}\) = \(\frac{-5}{6}\)

Therefore, \(\frac{-5}{6}\) is the lowest form of \(\frac{-60}{72}\).


More examples on simplest form or lowest form of a rational number:

3. Express each of the following rational numbers to the simplest form.

(i) \(\frac{-24}{-84}\) 

Solution:

We have, 24 = 2 × 2 × 2 × 3 and 84 = 2 × 2 × 3 × 7

Therefore, HCF of 24 and 84 is 2 × 2 × 3 = 12

Dividing numerator and denominator of \(\frac{-24}{-84}\) by 12, we get

\(\frac{-24}{-84}\) = \(\frac{(-24)  ÷  12}{(-84)  ÷  12}\) = \(\frac{-2}{-7}\)

Therefore, \(\frac{-2}{-7}\) is the simplest form of rational number \(\frac{-24}{-84}\).

 

(ii) \(\frac{91}{-364}\)

Solution:

We have, 91 = 7 × 13 and 364 = 2 × 2 × 7 × 13

Therefore, HCF of 91 and 364 is 13 × 7 = 91.

Dividing numerator and denominator by 91, we get

\(\frac{91}{-364}\) = \(\frac{91  ÷  91}{(-364)  ÷  91}\) = \(\frac{1}{-4}\)

Therefore, \(\frac{1}{-4}\) is the simplest form of \(\frac{91}{-364}\).

 

4. Fill in the blanks:

\(\frac{90}{165}\) = \(\frac{-6}{.....}\) = \(\frac{.....}{-55}\)

Solution:

Here, 90 = 2 × 3 × 3 × 5 and 165 = 3 x 5 x 11

Therefore, HCF of 90 and 165 is 15.

So, \(\frac{90}{165}\) is not in lowest form of rational number.

Dividing numerator and denominator by 15, we get

\(\frac{90}{165}\) = \(\frac{90  ÷  15}{165  ÷  15}\) = \(\frac{6}{11}\)

Thus, the rational number \(\frac{90}{165}\) in the lowest form equals \(\frac{6}{11}\)

Now, (-6) ÷ 6 = -1

Therefore, \(\frac{6}{11}\) = \(\frac{6  ×  (-1)}{11  ×  (-1)}\) = \(\frac{-6}{-11}\)

Similarly, we have (-55) ÷ 11 = -5

Therefore, \(\frac{6}{11}\) = \(\frac{6  ×  (-5)}{11  ×  (-5)}\) = \(\frac{-30}{-55}\)

Hence, \(\frac{90}{165}\) = \(\frac{-6}{-11}\) = \(\frac{-30}{-55}\)

Rational Numbers

Introduction of Rational Numbers

What is Rational Numbers?

Is Every Rational Number a Natural Number?

Is Zero a Rational Number?

Is Every Rational Number an Integer?

Is Every Rational Number a Fraction?

Positive Rational Number

Negative Rational Number

Equivalent Rational Numbers

Equivalent form of Rational Numbers

Rational Number in Different Forms

Properties of Rational Numbers

Lowest form of a Rational Number

Standard form of a Rational Number

Equality of Rational Numbers using Standard Form

Equality of Rational Numbers with Common Denominator

Equality of Rational Numbers using Cross Multiplication

Comparison of Rational Numbers

Rational Numbers in Ascending Order

Rational Numbers in Descending Order

Representation of Rational Numbers on the Number Line

Rational Numbers on the Number Line

Addition of Rational Number with Same Denominator

Addition of Rational Number with Different Denominator

Addition of Rational Numbers

Properties of Addition of Rational Numbers

Subtraction of Rational Number with Same Denominator

Subtraction of Rational Number with Different Denominator

Subtraction of Rational Numbers

Properties of Subtraction of Rational Numbers

Rational Expressions Involving Addition and Subtraction

Simplify Rational Expressions Involving the Sum or Difference

Multiplication of Rational Numbers

Product of Rational Numbers

Properties of Multiplication of Rational Numbers

Rational Expressions Involving Addition, Subtraction and Multiplication

Reciprocal of a Rational  Number

Division of Rational Numbers

Rational Expressions Involving Division

Properties of Division of Rational Numbers

Rational Numbers between Two Rational Numbers

To Find Rational Numbers





8th Grade Math Practice 

From Lowest form of a Rational Number to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  2. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 22, 24 01:00 AM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  3. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More

  4. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Nov 22, 24 12:12 AM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  5. 2nd Grade Measurement Worksheet | Measuring Length, Mass and Volume

    Nov 20, 24 12:50 AM

    In 2nd Grade Measurement Worksheet you will get different types of questions on measurement of length, measurement of weight (mass), measurement of capacity (volume), addition of length, addition of w…

    Read More

Rational Numbers - Worksheets

Worksheet on Rational Numbers

Worksheet on Equivalent Rational Numbers

Worksheet on Lowest form of a Rational Number

Worksheet on Standard form of a Rational Number

Worksheet on Equality of Rational Numbers

Worksheet on Comparison of Rational Numbers

Worksheet on Representation of Rational Number on a Number Line

Worksheet on Adding Rational Numbers

Worksheet on Properties of Addition of Rational Numbers

Worksheet on Subtracting Rational Numbers

Worksheet on Addition and Subtraction of Rational Number

Worksheet on Rational Expressions Involving Sum and Difference

Worksheet on Multiplication of Rational Number

Worksheet on Properties of Multiplication of Rational Numbers

Worksheet on Division of Rational Numbers

Worksheet on Properties of Division of Rational Numbers

Worksheet on Finding Rational Numbers between Two Rational Numbers

Worksheet on Word Problems on Rational Numbers

Worksheet on Operations on Rational Expressions

Objective Questions on Rational Numbers