Length of an Arc

The examples will help us to understand to how find the length of an arc using the formula of ‘s is equal to r theta’.


Worked-out problems on length of an arc:

1.  In a circle of radius 6 cm, an arc of certain length subtends 20° 17’ at the center. Find in sexagesimal unit the angle subtended by the same arc at the center of a circle of radius 8 cm. 

Solution: 

Let an arc of length be m cm subtends 20° 17’ at the center of a circle of radius 6 cm and α° at the center of a circle of radius 8 cm. 

Now, 20° 17’ = {20 (17/60)}° 

= (1217/60)°

= 1217π/(60 × 180) radian [since, 180° = π radian]

And α° = πα/180 radian

We know, the formula, s = rθ then we get,

When the circle of radius is 6 cm; m = 6 × [(1217π)/(60 × 180)] ………… (i)

And when the circle of radius 8 cm; m = 8 × (πα)/180 …………… (ii)    

Therefore, from (i) and (ii) we get;

8 × (πα)/180 = 6 × [(1217π)/(60 × 180)]

or, α = [(6/8) × (1217/60)]°

or, α = (3/4) ×  20° 17’   [since, (1217/60)° = 20° 17’]

or, α = 3 × 5°4’ 15”

or, α = 15° 12’ 45”.

Therefore, the required angle in sexagesimal unit = 15° 12’ 45”.

2. Aaron is running along a circular track at the rate of 10 mile per hour traverses in 36 seconds an arc which subtends 56° at the center. Find the diameter of the circle.

Solution:

One hour = 3600 seconds

One mile = 5280 feet

Therefore, 10 miles = (5280 × 10) feet = 52800 feet

In 3600 seconds Aaron goes 52800 feet

In 1 second Aaron goes 52800/3600 feet = 44/3 feet 

Therefore, in 36 seconds the Aaron goes (44/3) × 36 feet = 528 feet.

Clearly, an arc of length 528 feet subtends 56° = 56 × π/180 radian at the center of the circular track. If ‘y’ feet is the radius of the circular track then using the formula s = rθ we get,

y = s/θ

y = 528/[56 × (π/180)]

y = (528 × 180 × 7)/(56 × 22) feet

y = 540 feet

y = (540/3) yards   [since, we know that 3 foot = 1 yard]

y = 180 yards

Therefore, the required diameter = 2 × 180 yards = 360 yards.


3. If α1, α2, α3 radians be the angles subtended by the arcs of lengths l1, l2, l3 at the centers of the circles whose radii are r1, r2, r3 respectively then show that the angle subtended at the centre by the arc of length (l1 + l2 + l3) of a circle whose radius is (r1 + r2 + r3) will be (r1 α1 + r2α2 + r3α3)/(r1 + r2 + r3) radian.

Solution:

According to the problem, the length of an arc l1 of a circle of radius r1 subtends an angle α1 at its center. Hence, using the formula, s = rθ we get,

l1 = r1α1.

Similarly, l2 = r2α2

and l3 = r3 α3.

Therefore, , l1 + l2 + l3 = r1α1 + r2α2 + r3α3.

Let an arc of length (l1 + l2 + l3) of a circle of radius (r1 + r2 + r3) subtend an angle α radian at its center.

Then, α = (l1 + l2 + l3)/(r1 + r2 + r3)

Now, put the value of l1 = r1α1, l2 = r2α2 and l3 = r3α3.

or, α = (r1α1 + r2α2 + r3α3)/(r1 + r2 + r3) radian. Proved.

To solve more problems on length of an arc follow the proof on 'Theta equals s over r'.

 Measurement of Angles





11 and 12 Grade Math

From Length of an Arc to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More