Laws of Equality

Before knowing the properties of equality, let me introduce you to the properties of algebra. Below are given some properties which are applied in algebra:

1. Associative property of addition:

(a+b) +c = a + (b+c)


2. Commutative property of addition:

a + b = b + a


3. Additive property of 0:

a + 0 = 0 + a = a

4. Existence of additive inverses:

For every ‘a’ there exists (-a) so that a + (-a) = 0.


5. Associative property of multiplication:

(a x b) x c = a x (b x c)


6. Commutative property of multiplication:

a x b = b x a


7) Multiplicative identity property of 1:

a x 1 = 1 x a =a


8. Existence of multiplicative inverse:

For every ‘a’not equal to 0, there exists 1/a so that 

a x 1/a = 1/a x a = 1.


9. Distributive property of multiplication over addition:

a x (b + c) = a x b + a x c


Following are the some of the solved examples based on the above given properties to make the better understanding of the concept:


1. Associative property of addition:

The way 3 numbers are grouped when adding does not change the sum.

Example: 3 + (4 + 9) = (3 + 4) + 9 = 16.


2. Commutative property of addition:

The order in which two numbers are added does not change their sum.

Example: 3 + 9 = 9 + 3 = 12.


3. Additive identity property of 0:

The sum of a number and 0 is the number itself.

Example: 16 + 0 = 0 + 16 = 16.


4. Existence of additive inverses:

The sum of a number and its compliment (opposite) is equal to 0.

Eg. 12 + (-12) = 0.


5. Associative property of multiplication:

The way 3 numbers are grouped when multiplying does not change the product.

Eg. 4 x (3 x 2) = (4 x 3) x 2 = 24.


6. Commutative property of multiplication:

The order in which two numbers are multiplied does not change their product.

Example: 4 x 8 = 8 x 4 = 32.


7. Multiplicative identity property of 1:

The product of a number and 1 is the number itself.

Example: 8 x 1 = 8


8. Existence of multiplicative inverses:

The product of a number (which is not equal to 0) and its reciprocal is equal to 1.

Example: 4 x ¼ = 1.


9. Distributive property of multiplication over addition:

When multiplying a number by a sum, the number can be multiplied by each term in the sum. Multiplication can also be distributed over subtraction.

Example: Multiplication over addition:

      3 x (4 + 5) = 3 x 4 + 3 x 5 = 12 + 15 = 27.

Now, let me introduce you to the properties of equality. Following are the properties of equality:

1. Reflexive property of equality:

a = a.


2. Symmetric property of equality:

If a = b, then b = a.


3. Transitive property of equality:

If a = b and b = c, then a =c.


4. Addition property of equality;

If a = b, then a + c = b + c.


5. Subtraction property of equality:

If a = b, then a – c = b – c.


6. Multiplication property of equality:

If a = b, then a x c = b x c.


7. Division property of equality;

If a = b and ‘c’ is not equal to 0, then a/c = b/c.


8. Substitution property of equality:

If a = b, then ‘b’ may be substituted for ‘a’ in any expression containing ‘a’.


Below are given explanations and examples for the above mentioned properties of equality:

1. Reflexive property of equality:

Any number is equal to itself.

Example: 14 = 14.


2. Symmetric property of equality:

An equation may be written in the opposite order,

Example: If y = 45, then 45 = y.


3. Transitive property of equality:

Two quantities that are equal to the same thing are equal to each other.

Example: If x = 10 and 10 = y, then x = y.


4. Addition property of equality:

The same number can be added to both sides of an equation.

Example: If x = 35, then x + 4 = 35 + 4.


5. Subtraction property of equality:

The same number can be subtracted from both sides of an equation.

If x = 13, then x – 4 = 13 – 4.


6. Division property of equality:

Both sides of an equation can be divided by any non- zero number.

Example: If x = 8, then x/2 = 8/2.


7. Substitution property of equality;

A number may be substituted for its equal in any expression.

Example: If x = 80 and y = 80, then x = y.






9th Grade Math

From Laws of Equality to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Yesterday, Today and Tomorrow | Sequence of the Week-days

    Nov 25, 24 01:18 AM

    Practice the worksheet on yesterday, today and tomorrow, the questions are based on the sequence of the week-days, their names and order. We know, the present day is today, the day before today

    Read More

  2. Yesterday, Today and Tomorrow | Name of each Day of the Week

    Nov 25, 24 01:09 AM

    We will learn the relation between yesterday, today and tomorrow. There are seven days in a week. We know the name of each day of the week. Sunday is known as the first day of the week.

    Read More

  3. The Story about Seasons | Spring | Summer | Autumn | Winter

    Nov 25, 24 12:48 AM

    The Four Seasons
    Kids let’s enjoy the story about seasons. Here we will discuss about the four seasons and the duration. Some months are too hot and some are too cold. The period of hot months is called the hot

    Read More

  4. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Nov 25, 24 12:17 AM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 24, 24 11:01 PM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More