Latus Rectum of the Hyperbola

We will discuss about the latus rectum of the hyperbola along with the examples.


Definition of the Latus Rectum of  the Hyperbola:

The chord of the hyperbola through its one focus and perpendicular to the transverse axis (or parallel to the directrix) is called the latus rectum of the hyperbola.

Latus Rectum of  the Hyperbola

It is a double ordinate passing through the focus. Suppose the equation of the hyperbola be \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 then, from the above figure we observe that L\(_{1}\)SL\(_{2}\) is the latus rectum and L\(_{1}\)S is called the semi-latus rectum. Again we see that M\(_{1}\)SM\(_{2}\) is also another latus rectum.

According to the diagram, the co-ordinates of the end L\(_{1}\) of the latus rectum L\(_{1}\)SL\(_{2}\) are (ae, SL\(_{1}\)). As L\(_{1}\) lies on the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1, therefore, we get,

\(\frac{(ae)^{2}}{a^{2}}\) - \(\frac{(SL_{1})^{2}}{b^{2}}\) = 1

\(\frac{a^{2}e^{2}}{a^{2}}\) - \(\frac{(SL_{1})^{2}}{b^{2}}\) = 1     

e\(^{2}\) - \(\frac{(SL_{1})^{2}}{b^{2}}\) = 1

⇒ \(\frac{(SL_{1})^{2}}{b^{2}}\) = e\(^{2}\) - 1

⇒ SL\(_{1}\)\(^{2}\) = b\(^{2}\) . \(\frac{b^{2}}{a^{2}}\), [Since, we know that, b\(^{2}\) = a\(^{2}\)(e\(^{2} - 1\))]

⇒ SL\(_{1}\)\(^{2}\) = \(\frac{b^{4}}{a^{2}}\)       

Hence, SL\(_{1}\) = ± \(\frac{b^{2}}{a}\).

Therefore, the co-ordinates of the ends L\(_{1}\) and L\(_{2}\) are (ae, \(\frac{b^{2}}{a}\)) and (ae, - \(\frac{b^{2}}{a}\)) respectively and the length of latus rectum = L\(_{1}\)SL\(_{2}\) = 2 . SL\(_{1}\) = 2 . \(\frac{b^{2}}{a}\) = 2a(e\(^{2} - 1\))

Notes:

(i) The equations of the latera recta of the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 are x = ± ae.

(ii) A hyperbola has two latus rectum.


Solved examples to find the length of the latus rectum of a hyperbola:

Find the length of the latus rectum and equation of the latus rectum of the hyperbola x\(^{2}\) - 4y\(^{2}\) + 2x - 16y - 19 = 0.

Solution:

The given equation of the hyperbola x\(^{2}\) - 4y\(^{2}\) + 2x - 16y - 19 = 0

Now form the above equation we get,

(x\(^{2}\) + 2x + 1) - 4(y\(^{2}\) + 4y + 4) = 4

(x + 1)\(^{2}\) - 4(y + 2)\(^{2}\) = 4.

Now dividing both sides by 4

⇒ \(\frac{(x + 1)^{2}}{4}\) - (y + 2)\(^{2}\) = 1.

\(\frac{(x + 1)^{2}}{2^2} - \frac{(y + 2)^{2}}{1^{2}}\) ………………. (i)

Shifting the origin at (-1, -2) without rotating the coordinate axes and denoting the new coordinates with respect to the new axes by X and Y, we have

x = X - 1 and y = Y - 2 ………………. (ii)

Using these relations, equation (i) reduces to \(\frac{X^{2}}{2^{2}}\) - \(\frac{Y^{2}}{1^{2}}\) = 1 ………………. (iii)

This is of the form \(\frac{X^{2}}{a^{2}}\) - \(\frac{Y^{2}}{b^{2}}\) = 1, where a = 2 and b = 1.

Thus, the given equation represents a hyperbola.

Clearly, a > b. So, the given equation represents a hyperbola whose tranverse and conjugate axes are along X and Y axes respectively.

Now fine the eccentricity of the hyperbola:

We know that e = \(\sqrt{1 + \frac{b^{2}}{a^{2}}}\) = \(\sqrt{1 + \frac{1^{2}}{2^{2}}}\) = \(\sqrt{1 + \frac{1}{4}}\) = \(\frac{√5}{2}\).

Therefore, the length of the latus rectum = \(\frac{2b^{2}}{a}\) = \(\frac{2 ∙ (1)^{2}}{2}\) = \(\frac{2}{2}\) = 1.

The equations of the latus recta with respect to the new axes are X = ±ae

X = ± 2 \(\frac{√5}{2}\)

X = ± √5

Hence, the equations of the latus recta with respect to the old axes are

x = ±√5 – 1, [Putting X = ± √5 in (ii)]

i.e., x = √5 - 1 and x = -√5 – 1.

The Hyperbola






11 and 12 Grade Math 

From Latus Rectum of the Hyperbola to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 3rd Grade Math Worksheets |3rd Grade Math Sheets|3rd Grade Math Lesson

    Jan 14, 25 02:50 PM

    3rd Grade Math Worksheets
    3rd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  2. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:57 PM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  3. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More

  4. Word Problems on Subtraction |Worksheet on Subtraction Word Problems |

    Jan 14, 25 12:21 AM

    Subtraction Problem
    In word problems on subtraction we need to read the question carefully and understand what we need to find out. We know, in subtraction the larger number from which we subtract the other number (the s…

    Read More

  5. Worksheet on Estimating Sums and Differences | Find the Estimated Sum

    Jan 13, 25 01:34 PM

    Estimate the Difference
    In 4th grade worksheet on estimating sums and differences, all grade students can practice the questions on estimations.This exercise sheet on estimating sums and differences can be practiced

    Read More