Inverse Variation Using Method of Proportion

Now we will learn how to solve inverse variations using method of proportion.

We know, the two quantities may be linked in such a way that if one increases, other decreases. If one decreases, the other increases.


Some situations of inverse variation using method of proportion:

● More men at work, less time taken to finish the work.

● More speed, less time is taken to cover the same distance.


Solved examples on inverse variations using method of proportion:

1. If 63 workers can do a piece of work in 42 days, then 27 workers will complete the same work in how many days?

Solution:         

This is a situation of inverse variation, now we solve using method of proportion.  

Less men at work means more days are taken to complete the work.

Number of workers

Number of Days

63                27

42                 x

Since, the two quantities vary inversely

Therefore, 63 × 42 = 27 × x

⇒ (63 × 42)/27 = x

⇒ x = 98 days

Therefore, 27 workers can complete the same work in 98 days.


2. In a summer camp there is enough food for 250 students for 21 days. If 100 more students join the camp, how many days will the food last?

Solution:

This is a situation of inverse variation, now we solve using method of proportion.  

More students means food lasts for less days.

(Here, the two quantities vary inversely)

Number of Students

Number of Days

250                350

 21                  x

Since, the two quantities vary inversely

Therefore, 250 × 21 = 350 × x

So, x = (250 × 21)/350

⇒ x = 15 days

Therefore, for 350 students food lasts for 15 days.

3. Carol starts at 9:00 am by bicycle to reach office. She cycles at the speed of 8 km/hour and reaches the office at 9:15 am. By how much should she increase the speed so that she can reach the office at 9:10 am?

Solution:

This is a situation of inverse variation, now we solve using method of proportion.  

More the speed, less will be the time taken to cover the given distance.

(Here, the two quantities vary inversely)

Time (in minutes)

Speed (in km/hr)

15          10

 8           x

Since, the two quantities vary inversely

Therefore, 15 × 8 = 10 × x

So, x = (15 × 8)/10

Therefore, in 10 minutes she reaches the office at the speed of 12 km/hr.


4. 25 labours can complete a work in 51 days. How many labours will complete the same work in 15 days?

Solution:

This is a situation of inverse variation, now we solve using method of proportion.  

Less days, more labours at work.

(Here, the two quantities vary inversely)

Number of Days

Number of labours

51          15

25           x

Since, the two quantities vary inversely

Therefore, 51 × 25 = 15 × x

So, x = (51 × 25)/15

Therefore, to complete the work in 15 days, there must be 85 labours at work.

Problems Using Unitary Method

Situations of Direct Variation

Situations of Inverse Variation

Direct Variations Using Unitary Method

Direct Variations Using Method of Proportion

Inverse Variation Using Unitary Method

Inverse Variation Using Method of Proportion

Problems on Unitary Method using Direct Variation

Problems on Unitary Method Using Inverse Variation

Mixed Problems Using Unitary Method






7th Grade Math Problems

From Inverse Variation Using Method of Proportion to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Yesterday, Today and Tomorrow | Sequence of the Week-days

    Nov 25, 24 01:18 AM

    Practice the worksheet on yesterday, today and tomorrow, the questions are based on the sequence of the week-days, their names and order. We know, the present day is today, the day before today

    Read More

  2. Yesterday, Today and Tomorrow | Name of each Day of the Week

    Nov 25, 24 01:09 AM

    We will learn the relation between yesterday, today and tomorrow. There are seven days in a week. We know the name of each day of the week. Sunday is known as the first day of the week.

    Read More

  3. The Story about Seasons | Spring | Summer | Autumn | Winter

    Nov 25, 24 12:48 AM

    The Four Seasons
    Kids let’s enjoy the story about seasons. Here we will discuss about the four seasons and the duration. Some months are too hot and some are too cold. The period of hot months is called the hot

    Read More

  4. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Nov 25, 24 12:17 AM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 24, 24 11:01 PM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More

Worksheet on Direct Variation using Unitary Method

Worksheet on Direct variation using Method of Proportion

Worksheet on Word Problems on Unitary Method

Worksheet on Inverse Variation Using Unitary Method

Worksheet on Inverse Variation Using Method of Proportion