Hyperbola Formulae

Hyperbola formulae will help us to solve different types of problems on hyperbola in co-ordinate geometry.

1. \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1, (a > b)

(i) The co-ordinates of the centre are (0, 0).

(ii) The co-ordinates of the vertices are (± a, 0) i.e., (-a, 0) and (a, 0).

(iii) The co-ordinates of the foci are (± ae, 0) i.e., (- ae, 0) and (ae, 0)

(iv) The length of transverse axis = 2a and the length of conjugate axis = 2b.

(v) The transverse axis is along x axis and the equations of transverse axes is y = 0.

(vi) The conjugate axis is along y axis and the equations of conjugate axes is x = 0.

(vii) The equations of the directrices are: x = ± \(\frac{a}{e}\) i.e., x = - \(\frac{a}{e}\) and x = \(\frac{a}{e}\).

(viii) The eccentricity of the hyperbola is b\(^{2}\) = a\(^{2}\)(e\(^{2}\) - 1) or, e = \(\sqrt{1 + \frac{b^{2}}{a^{2}}}\).

(ix) The length of the latus rectum 2 ∙ \(\frac{b^{2}}{a}\) = 2a(e\(^{2}\) - 1).

(x) The distance between the two foci = 2ae.

(xi) The distance between two directrices = 2 ∙ \(\frac{a}{e}\).

(xii) Focal distances of a point (x, y) are a ± ex

(xiii) The co-ordinates of the four ends of latera recta are (ae, \(\frac{b^{2}}{a}\)), (ae, -\(\frac{b^{2}}{a}\)), (- ae, \(\frac{b^{2}}{a}\)) and (- ae, -\(\frac{b^{2}}{a}\)).

(xiv) The equations of latera recta are x = ± ae i.e., x = ae and x = -ae.

                      

2. \(\frac{x^{2}}{b^{2}}\) - \(\frac{y^{2}}{a^{2}}\) = 1, (a > b)

(i) The co-ordinates of the centre are (0, 0).

(ii) The co-ordinates of the vertices are (0, ± a) i.e., (0, -a) and (0, a).

(iii) The co-ordinates of the foci are (0, ± ae) i.e., (0, - ae) and (0, ae)

(iv) The length of transverse axis = 2a and the length of conjugate axis = 2b.

(v) The transverse axis is along Y-axis and the equations of conjugate axes is x = 0.

(vi) The transverse axis is along X-axis and the equations of conjugate axes is y = 0.

(vii) The equations of the directrices are: y = ± \(\frac{a}{e}\) i.e., y = - \(\frac{a}{e}\) and y = \(\frac{a}{e}\).

(viii) The eccentricity of the hyperbola is b2 = a\(^{2}\)(e\(^{2}\) - 1) or,  e = \(\sqrt{1 + \frac{b^{2}}{a^{2}}}\)

(ix) The length of the latus rectum 2 ∙ \(\frac{b^{2}}{a}\) = 2a (e\(^{2}\) - 1).

(x) The distance between the two foci = 2ae.

(xi) The distance between two directrices = 2 ∙ \(\frac{a}{e}\).

(xii) Focal distances of a point (x, y) are a ± ey

(xiii) The co-ordinates of the four ends of latera recta are (\(\frac{b^{2}}{a}\), ae), (-\(\frac{b^{2}}{a}\), ae), (\(\frac{b^{2}}{a}\), -ae) and (-\(\frac{b^{2}}{a}\), -ae).

(xiv) The equations of latera recta are y = ± ae i.e., y = ae and y = -ae.


3. \(\frac{(x - α)^{2}}{a^{2}}\) - \(\frac{(y - β)^{2}}{b^{2}}\) = 1, (a > b)

(i) The co-ordinates of the centre are (α, β).

(ii) The co-ordinates of the vertices are (α ± a, β) i.e., (α - a, β) and (α + a, β).

(iii) The co-ordinates of the foci are (α ± ae, β) i.e., (α - ae, β) and (α + ae, β)

(iv) The length of transverse axis = 2a and the length of conjugate axis = 2b.

(v) The transverse axis is along parallel to x axis and the equations of transverse axes is y = β.

(vi) The conjugate axis is along parallel to y axis and the equations of conjugate axes is x = α.

(vii) The equations of the directrices are: x = α ± \(\frac{a}{e}\) i.e., x = α - \(\frac{a}{e}\) and x = α + \(\frac{a}{e}\).

(viii) The eccentricity of the hyperbola is b\(^{2}\) = a\(^{2}\)(e\(^{2}\) - 1) or, e = \(\sqrt{1 + \frac{b^{2}}{a^{2}}}\)

(ix) The length of the latus rectum 2 ∙ \(\frac{b^{2}}{a}\) = 2a (e\(^{2}\) - 1).

(x) The distance between the two foci = 2ae.

(xi) The distance between two directrices = 2 ∙ \(\frac{a}{e}\).


4. \(\frac{(x - α)^{2}}{b^{2}}\) - \(\frac{(y - β)^{2}}{a^{2}}\) = 1, (a > b)

(i) The co-ordinates of the centre are (α, β).

(ii) The co-ordinates of the vertices are (α, β ± a) i.e., (α, β - a) and (α, β + a).

(iii) The co-ordinates of the foci are (α, β ± ae) i.e., (α, β - ae) and (α, β + ae).

(iv) The length of transverse axis = 2a and the length of conjugate axis = 2b.

(v) The transverse axis is along parallel to Y-axis and the equations of transverse axes is x = α.

(vi) The conjugate axis is along parallel to X-axis and the equations of conjugate axes is y = β.

(vii) The equations of the directrices are: y = β ± \(\frac{a}{e}\) i.e., y = β - \(\frac{a}{e}\) and y = β + \(\frac{a}{e}\).

(viii) The eccentricity of the hyperbola is b\(^{2}\) = a\(^{2}\)(e\(^{2}\) - 1) or, e = \(\sqrt{1 + \frac{b^{2}}{a^{2}}}\)

(ix) The length of the latus rectum 2 ∙ \(\frac{b^{2}}{a}\) = 2a (e\(^{2}\) - 1).

(x) The distance between the two foci = 2ae.

(xi) The distance between two directrices = 2 ∙ \(\frac{a}{e}\).


5. The point P (x\(_{1}\), y\(_{1}\)) lies outside, on or inside the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 according as \(\frac{x_{1}^{2}}{a^{2}}\) - \(\frac{y_{1}^{2}}{b^{2}}\) – 1 < 0, = or > 0.

6. If \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 is an hyperbola, then its auxiliary circle is x\(^{2}\) + y\(^{2}\) = a\(^{2}\).

7. The equations x = a sec θ, y = b tan θ taken together are called the parametric equations of the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1

8. The co-ordinates of the point having eccentric angle θ can be written as (a sec θ, b tan θ). Here (a sec θ, b tan θ) are known as the parametric co-ordinates of the point P.

9. The equation of rectangular hyperbola is x\(^{2}\) - y\(^{2}\) = a\(^{2}\).

Some of the properties of rectangular hyperbola:

(i) The transverse axis is along x-axis

(ii) The conjugate axis is along y-axis

(iii) The length of transverse axis = 2a

(iv) The length of conjugate axis = 2a

(v) The eccentricity of the rectangular hyperbola = √2.


10. The conjugate hyperbola of the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 is - \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1

In other wards two hyperbolas \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 …………………(i) and - \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 ……………….(ii) are conjugate to one another, if e1 and e2 he the eccentricities of (i) and (ii) respectively, then b\(^{2}\) = a\(^{2}\)(e\(_{1}\)\(^{2}\)  - 1) and a\(^{2}\) = b\(^{2}\)(e\(_{2}\)\(^{2}\)  - 1).

The Hyperbola





11 and 12 Grade Math

From Hyperbola Formulae to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Nov 20, 24 01:00 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  2. 2nd Grade Measurement Worksheet | Measuring Length, Mass and Volume

    Nov 20, 24 12:50 AM

    In 2nd Grade Measurement Worksheet you will get different types of questions on measurement of length, measurement of weight (mass), measurement of capacity (volume), addition of length, addition of w…

    Read More

  3. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 20, 24 12:16 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  4. 2nd Grade Math Practice | Second Grade Math |2nd Grade Math Worksheets

    Nov 18, 24 02:23 PM

    In 2nd grade math practice you will get all types of examples on different topics along with the solutions. Second grade math games are arranged in such a way that students can learn math

    Read More

  5. Worksheet on Addition of Length | Word Problems on Addition of Length

    Nov 17, 24 10:29 PM

    Practice the third grade math worksheet on addition of length. This sheet provides different types of questions where you need to arrange the values of length under different columns to find their sum

    Read More