General Form into Normal Form

We will learn the transformation of general form into normal form.

To reduce the general equation Ax + By + C = 0 into normal form (x cos α + y sin α = p):

We have the general equation Ax + By + C = 0.

Let the normal form of the given equation ax + by + c = 0……………. (i) be  

x cos α + y sin α - p = 0, where p > 0. ……………. (ii)

Then, the equations (i) and (ii) are the same straight line i.e., identical.

⇒ \(\frac{A}{cos α}\) = \(\frac{B}{sin α}\) = \(\frac{C}{-p}\)

⇒ \(\frac{C}{P}\) = \(\frac{-A}{cos α}\) = \(\frac{-B}{sin α}\) = \(\frac{+\sqrt{a^{2} + b^{2}}}{\sqrt{cos^{2} α + sin^{2} α}}\) = +  \(\sqrt{A^{2} + B^{2}}\)

Therefore, p = \(\frac{C}{\sqrt{A^{2} + B^{2}}}\), cos α = - \(\frac{A}{\sqrt{A^{2} + B^{2}}}\) and sin α = - \(\frac{B}{\sqrt{A^{2} + B^{2}}}\)

So, putting the values of cos α, sin α and p in the equation (ii) we get the form,

⇒ - \(\frac{A}{\sqrt{A^{2} + B^{2}}}\) x - \(\frac{B}{\sqrt{A^{2} + B^{2}}}\) y - \(\frac{C}{\sqrt{A^{2} + B^{2}}}\) =  0, when c > 0

⇒ \(\frac{A}{\sqrt{A^{2} + B^{2}}}\) x +  \(\frac{B}{\sqrt{A^{2} + B^{2}}}\) y = - \(\frac{C}{\sqrt{A^{2} + B^{2}}}\), when c < 0

Which is the required normal form of the general form of equation Ax + By + C = 0.

 

Algorithm to Transform the General Equation to Normal Form

Step I: Transfer the constant term to the right hand side and make it positive.

Step II: Divide both sides by \(\sqrt{(\textrm{Coefficient of x})^{2} + (\textrm{Coefficient of y})^{2}}\).

The obtained equation will be in the normal form.


Solved examples on transformation of general equation into normal form:

1. Reduce the line 4x + 3y - 19 = 0 to the normal form.

Solution:

The given equation is 4x + 3y - 19 = 0

First shift the constant term (-19) on the RHS and make it positive.

4x + 3y = 19 ………….. (i)

Now determine \(\sqrt{(\textrm{Coefficient of x})^{2} + (\textrm{Coefficient of y})^{2}}\)

= \(\sqrt{(4)^{2} + (3)^{2}}\)

= \(\sqrt{16 + 9}\)

= √25

= 5

Now dividing both sides of the equation (i) by 5, we get

\(\frac{4}{5}\)x + \(\frac{3}{5}\)y = \(\frac{19}{5}\)

Which is the normal form of the given equation 4x + 3y - 19 = 0.

 

2. Transform the equation 3x + 4y = 5√2 to normal form and find the perpendicular distance from the origin of the straight line; also find the angle that the perpendicular makes with the positive direction of the x-axis.

Solution:    

The given equation is 3x + 4y = 5√2 ……..….. (i)

Dividing both sides of equation (1) by + \(\sqrt{(3)^{2} + (4)^{2}}\) = + 5 we get,

⇒ \(\frac{3}{5}\)x + \(\frac{4}{5}\)y = \(\frac{5√2}{5}\)

⇒ \(\frac{3}{5}\)x + \(\frac{4}{5}\)y = √2

Which is the normal form of the given equation 3x + 4y = 5√2.

Therefore, the required, perpendicular distance from the origin of the straight line (i) is √2 units.

If the perpendicular makes an angle α with the positive direction of the x-axis then,

cos α = \(\frac{3}{4}\) and sin α = \(\frac{4}{5}\)

Therefore, tan α = \(\frac{sin α}{cos α }\) = \(\frac{\frac{4}{5}}{\frac{3}{5}}\) = \(\frac{4}{3}\)

⇒ α = tan\(^{-1}\)\(\frac{4}{3}\).

 The Straight Line




11 and 12 Grade Math 

From General Form into Normal Form to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 3rd Grade Math Worksheets |3rd Grade Math Sheets|3rd Grade Math Lesson

    Jan 14, 25 02:50 PM

    3rd Grade Math Worksheets
    3rd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  2. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:57 PM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  3. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More

  4. Word Problems on Subtraction |Worksheet on Subtraction Word Problems |

    Jan 14, 25 12:21 AM

    Subtraction Problem
    In word problems on subtraction we need to read the question carefully and understand what we need to find out. We know, in subtraction the larger number from which we subtract the other number (the s…

    Read More

  5. Worksheet on Estimating Sums and Differences | Find the Estimated Sum

    Jan 13, 25 01:34 PM

    Estimate the Difference
    In 4th grade worksheet on estimating sums and differences, all grade students can practice the questions on estimations.This exercise sheet on estimating sums and differences can be practiced

    Read More