Frustum of a Pyramid


If a right pyramid is cut by plane parallel to the base then the portion of the pyramid between the plane and the base of the pyramid is called a frustum of the pyramid.

Let the square WXYZ be the base and P, the vertex of a right pyramid.

frustum of a pyramid, frustum

If a plane parallel to the base WXYZ of the pyramid cuts it in the plane W’X’Y’Z’ then the portion of pyramid between the planes WXYZ and W’X’Y’Z’ will be a frustum of the given pyramid. The perpendicular distance between this two planes is the height of the frustum. Clearly side-face (viz. WXX’W’, XYY’X’ ect.) are trapeziums; the distance between the parallel sides of this trapeziums is the slant height of the frustum of the pyramid.

Let S₁ and S₂ be the areas of the lower and upper planes respectively of the frustum of a pyramid; if h and l be the height and slant height respectively of the frustum, then 





(A) Area of the slant faces of the frustum 

= ½ × (perimeter of the lower face + perimeter of the upper face) × l.

(B) Area of whole surface of the frustum 

= Area of the slant faces + S₁ + S₂;

(C) Volume of the frustum = 1/3 × (S₁ + S₂ + √ S₁ S₂) × h.


Worked-out problems on Frustum of a Pyramid:


A monument has the shape of a frustum of a right pyramid whose lower and upper plane faces are squares of sides 16 meter and 9 meter respectively. If the height of the monument is 21 meter, find its volume.

Solution:

Clearly, the area of the lower faces of the monument = S₁ = (16)² square meter = 256 square meter and the area of the upper face of the monument = S₂ = 9² square meter = 81 square meter.

Therefore, the volume of the monument

= the volume of the frustum of a right pyramid

= 1/3 × (S₁ + S₂ + √S₁S₂) × height of the frustum

= 1/3 × [256 + 81 + √{(16)² × 9²} × 21 cubic meter.

= 1/3 × (256 + 81 + 144) × 21 cubic meter.

= 1/3 × 481 × 21 cubic meter.

= 7 × 481 cubic meter.

= 3367 cubic meter.









From Frustum of a Pyramid to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Addition of Capacity | Add the Different Units of Capacity | Examples

    Nov 14, 24 03:03 PM

    Addition of Measurement of Capacity
    In addition of capacity we will learn how to add the different units of capacity and volume together. While adding we need to follow that the units of capacity i.e., liter and milliliter

    Read More

  2. Measuring Capacity | Standard Unit of Capacity | Litre | Millilitres

    Nov 14, 24 02:40 PM

    2 Tablespoonful of Water
    We will discuss about measuring capacity. The milkman measures milk in liters. Petrol is given in liters. Mobil oil is sold in liters. Two milk bottles contain 1 liter of milk. One milk bottle

    Read More

  3. Subtraction of Mass | Difference Between the Units of Mass | Examples

    Nov 14, 24 09:16 AM

    Subtraction of Measurement of Weight
    In subtraction of mass we will learn how to find the difference between the units of mass or weight. While subtracting we need to follow that the units of mass i.e., kilogram and gram

    Read More

  4. Worksheet on Subtraction of Mass |Word Problems on Subtraction of Mass

    Nov 13, 24 02:00 PM

    Worksheet on Subtraction of Mass
    Practice the third grade math worksheet on subtraction of mass or weight. This sheet provides different types of questions where you need to arrange the values of mass under different columns

    Read More

  5. Worksheet on Addition of Mass | Word problems on Addition of Mass

    Nov 13, 24 10:24 AM

    Practice the third grade math worksheet on addition of mass/weight. This sheet provides different types of questions where you need to arrange the values of mass under different columns

    Read More