Formulae for Converting Sum or Difference into Product

How to remember the formulae for converting sum or difference into product?

sin α + sin β = 2 sin (α + β)/2 cos (α - β)/2 ………. (i)

sin α - sin β = 2 cos (α + β)/2 sin (α - β)/2 ………. (ii)

cos α + cos β = 2 cos (α + β)/2 cos (α - β)/2 ………. (iii)

cos α - cos β = 2 sin (α + β)/2 sin (β - α)/2 ………. (iv)


The following points will help us to remember the above four formulas:

(i) In the product part 2 always appear as a factor.

(ii) The angles in sin or cos of product appear as sum/2 that is, (α + β)/2 of the given angles α and β.

(iii) The angles in sin or cos of product appear as difference/2 that is, (α - β)/2 of the given angles α and β.

(iv) But, there is an exception in the formula for cos α - cos β = 2 sin (α + β)/2 sin (β - α)/2, here we can see in place of (α - β)/2 we have (β - α)/2.

(v) In case of formula (i), the product consists of a pair of sin and cos in the conversion of the sum of two sines we get sin (α + β)/2 and cos (α - β)/2 as factors.

(vi) In case of formula (ii), the product consists of a pair of sin and cos in the conversion of the difference of two sines we get cos (α + β)/2 and sin (α - β)/2 as factors.

(vii) In case of formula (iii), the product consists of two cosines as factors in the conversion of the sum of two cosines.

(viii) In case of formula (iv), the product consists of two sines as factors in the conversion of difference of two cosines.


The following verbal statements will help us to remember the above four formulas:

For formula (i): sin + sin = 2 sin (sum/2) cos (difference/2)

For formula (ii): sin - sin = 2 cos (sum/2) sin (difference/2)

For formula (iii): cos + cos = 2 cos (sum/2) cos (difference/2)

For formula (iv): cos - cos = 2 sin (sum/2) sin (difference reversed/2)

 Converting Product into Sum/Difference and Vice Versa






11 and 12 Grade Math

From Formulae for Converting Sum or Difference into Product to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More