Find the Area of the Shaded Region

Here we will learn how to find the area of the shaded region.

To find the area of the shaded region of a combined geometrical shape, subtract the area of the smaller geometrical shape from the area of the larger geometrical shape.

1. A regular hexagon is inscribed in a circle of radius 14 cm. Find the area of the circle falling outside the hexagon.

Solution:

The given combined shape is combination of a circle and a regular hexagon.

Required area = Area of the circle – Area of the regular hexagon.

To find the area of the shaded region of the given combined geometrical shape, subtract the area of the regular hexagon (smaller geometrical shape) from the area of the circle (larger geometrical shape).

Area of the circle = πr2

                         = \(\frac{22}{7}\) × 142 cm2.

                         = 616 cm2.

Area of the regular hexagon = 6 × area of the equilateral ∆OPQ

                                         = 6 × \(\frac{√3}{4}\)  × OP2

                                         = \(\frac{3√3}{2}\) × 142 cm2.

                                         = 294√3 cm2.

                                         = 509.21 cm2.

Alternate method

Required area = 6 × area of the segment PQM

                     = 6{Area of the sector OPMQ – Area of the equilateral ∆OPQ

                     = 6{\(\frac{60°}{360°}\) × πr2 - \(\frac{√3}{4}\)r2}

                     = 6{\(\frac{1}{6}\) ∙ \(\frac{22}{7}\) ∙ 142 - \(\frac{√3}{4}\) × 142} cm2.

                     = (22 × 2 × 14 - 3√3 × 14 × 7) cm2.

                     = (616 - 294 × 1.732) cm2.

                     = (616 - 509.21) cm2.

                     = 106.79 cm2.

 

2. Three equal circles, each of radius 7 cm, touch each other, as shown. Find the shaded area between the three circles. Also, find the perimeter of the shaded region.

Solution:

The triangle PQR is equilateral, each of whose sides is of length = 7 cm + 7 cm, i.e., 14 cm. So, each of the angles SPU, TRU, SQT has the measure 60°.

Area of the ∆PQR = \(\frac{√3}{4}\) × (Side)2

                          = \(\frac{√3}{4}\) × 142 cm2.

Area of each of the three sectors = \(\frac{60°}{360°}\) × πr2

                                                = \(\frac{1}{6}\) ∙ \(\frac{22}{7}\) ∙ 72 cm2.

Now, the shaded area = Area of the triangle ∆PQR - Area of the sector ∆SPU - Area of the sector ∆TRU - Area of the sector ∆SQT

                                 = \(\frac{√3}{4}\) × 142 cm2 – 3 × (\(\frac{1}{6}\) × \(\frac{22}{7}\) × 72) cm2.

                                 = (49√3 – 77) cm2.

                                 = (49 × 1.732 – 77) cm2.

                                 = 7.87 cm2.

Next, perimeter of the shaded region

                                = Sum of arcs SU, TU and TS, which are equal.

                                 = 3 × arc SU

                                 = 3 × \(\frac{60°}{360°}\) × 2πr

                                 = 3 × \(\frac{1}{6}\) × 2 × \(\frac{22}{7}\) × 7 cm

                                 = 22 cm.





10th Grade Math

From Find the Area of the Shaded Region to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More