Factorization of Perfect Square Trinomials

In factorization of perfect square trinomials we will learn how to solve the algebraic expressions using the formulas. To factorize an algebraic expression expressible as a perfect square, we use the following identities:

(i) a2 + 2ab + b2 = (a + b)2 = (a + b) (a + b)

(ii) a2 - 2ab + b2 = (a - b)2 = (a - b) (a - b)

Note: We will also learn to use two identities in the same question, to factorize the expression.


Solved problems on factorization of perfect square trinomials:

1. Factorization when the given expression is a perfect square:

(i) x4 - 10x2y2 + 25y4



Solution:

We can express the given expression x4 - 10x2y2 + 25y4 as a2 - 2ab + b2

= (x2)2 - 2 (x2) (5y2) + (5y2)2

Now it’s in the form of the formula of a2 + 2ab + b2 = (a + b)2 then we get,

= (x2 - 5y2)2

= (x2 – 5y2) (x2 – 5y2)


(ii) x2+ 6x + 9

Solution:

We can express the given expression x2 + 6x + 9 as a2 + 2ab + b2

= (x)2 + 2 (x) (3) + (3)2

Now we will apply the formula of a2 + 2ab + b2 = (a + b)2 then we get,

= (x + 3)2

= (x + 3) (x + 3)


(iii) x4 - 2x2 y2 + y4

Solution:

We can express the given expression x4 - 2x2 y2 + y4 as a2 - 2ab + b2

= (x2)2 - 2 (x2) (y2) + (y2)2

Now we will apply the formula of a2 - 2ab + b2 = (a - b)2 then we get,

=(x2 – y2)2

=(x2 - y2) (x2 – y2)

Now we will apply the formula of differences of two squares i.e. a2 - b2 = (a + b) (a – b) then we get,

= (x + y) (x- y) (x + y) (x- y)



2. Factorize using the identity:     

(i) 25 – x2 - 2xy - y2

Solution:

25 – x2 - 2xy - y2

= 25 - [x2 + 2xy + y2], rearranged

Now we see that x2 + 2xy + y2 as in the form of a2 + 2ab + b2.

= (5)2 – (x + y)2

Now we will apply the formula of differences of two squares i.e. a2 - b2 = (a + b) (a – b) then we get,

= [5 + (x + y)] [5 - (x + y)]

= (5 + x + y) (5 – x - y)


(ii) 1- 2xy- (x2 + y2)

Solution:

1- 2xy- (x2 + y2)

= 1 - 2xy - x2 - y2

= 1 - (x2 + 2xy + y2), rearranged

= 1 - (x + y )2

= (1)2 – (x + y)2

= [1 + (x + y)] [1 - (x + y)]

= [1 + x + y] [1 - x - y]

Note:

We see that to solve the above problems on factorization of perfect square trinomials we not only used perfect square identities but we also used the difference of two squares identity in different situations.





8th Grade Math Practice

From Factorization of Perfect Square Trinomials to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Yesterday, Today and Tomorrow | Sequence of the Week-days

    Nov 25, 24 01:18 AM

    Practice the worksheet on yesterday, today and tomorrow, the questions are based on the sequence of the week-days, their names and order. We know, the present day is today, the day before today

    Read More

  2. Yesterday, Today and Tomorrow | Name of each Day of the Week

    Nov 25, 24 01:09 AM

    We will learn the relation between yesterday, today and tomorrow. There are seven days in a week. We know the name of each day of the week. Sunday is known as the first day of the week.

    Read More

  3. The Story about Seasons | Spring | Summer | Autumn | Winter

    Nov 25, 24 12:48 AM

    The Four Seasons
    Kids let’s enjoy the story about seasons. Here we will discuss about the four seasons and the duration. Some months are too hot and some are too cold. The period of hot months is called the hot

    Read More

  4. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Nov 25, 24 12:17 AM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 24, 24 11:01 PM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More