Factorization of Expressions of the Form x\(^{2}\) + (a + b)x + ab

Here we will learn the process of Factorization of Expressions of the Form  x\(^{2}\) + (a + b)x + ab.

We know, (x + a)(x + b) = x\(^{2}\) + (a + b)x + ab.

Therefore, x\(^{2}\) + (a + b)x + ab = (x + a)(x + b).


1. Factorize: a\(^{2}\) + 7a + 12.

Solution:

Here, constant term = 12 = 3 × 4, and 3 + 4 = 7 (= coefficient of a).

Therefore, a\(^{2}\) + 7a + 12 = a\(^{2}\) + 3a + 4a + 12 (breaking 7a is sum of two terms, 3a + 4a)

                                    = (a\(^{2}\) + 3a) + (4a + 12)

                                    = a(a + 3) + 4(a + 3)

                                    = (a + 3)(a + 4).


2. Factorize: m\(^{2}\) – 5m + 6.

Solution:

Here, constant term = 6 = (-2) × (-3), and (-2) + (-3) = -5 (= coefficient of m).

Therefore, m\(^{2}\) – 5m + 6 = m\(^{2}\) -2m – 3m + 6 (breaking -5m is sum of two terms, -2m - 3m)

                                   = (m\(^{2}\) -2m) +(– 3m + 6)

                                   = m(m - 2) - 3(m - 2)

                                   = (m - 2)(m - 3).


3. Factorize: x\(^{2}\)- x - 6.

Solution:

Here, constant term = -6 = (-3) × 2, and (-3) + 2 = -1 (= coefficient of x).

Therefore, x\(^{2}\) - x - 6 = x\(^{2}\) - 3x + 2x - 6 (breaking -x is sum of two terms, -3x + 2x)

                              = (x\(^{2}\) - 3x) + (2x - 6)

                              = x(x - 3)+ 2(x - 3)

                              = (x - 3)(x  + 2).

The method of factorizing x\(^{2}\) + px + q by breaking the middle term, as shown in the above examples, involves the following steps.


Steps:

1. Take the constant term (with the sign) q.

2. Break q into two factors, a, b (with suitable signs) whose sum equals the coefficient of x, i.e., a + b = p.

3. Pair one of these, say, ax with x\(^{2}\), and the other, bx, with the constant term q.  Then factorize.


Note: In case step 2 is not possible conveniently, x\(^{2}\) + px + q cannot be factorized as above.

For example, x\(^{2}\) + 3x + 4. Here 4 cannot be broken into two factors whose sum is 3.






9th Grade Math

From Factorization of Expressions of the Form x^2 + (a + b)x + ab to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Properties of Multiplication | Multiplicative Identity | Whole Numbers

    Jan 15, 25 12:08 AM

    Properties of Multiplication of Whole Numbers
    There are six properties of multiplication of whole numbers that will help to solve the problems easily. The six properties of multiplication are Closure Property, Commutative Property, Zero Property…

    Read More

  2. Multiplication Table | Learn Tables from 0 – 25 | Multiplication Table

    Jan 14, 25 11:53 PM

    multiplication table
    In math multiplication table we will learn the tables from 0 – 25. These multiplication tables help the students to learn the essential multiplication facts. Multiplication tables are very important f…

    Read More

  3. 3rd Grade Math Worksheets |3rd Grade Math Sheets|3rd Grade Math Lesson

    Jan 14, 25 11:02 PM

    3rd Grade Math Worksheets
    3rd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  4. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:57 PM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  5. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More