We will how to express the sum or difference as a product.
1. Convert sin 7α + sin 5α as a product.
Solution:
sin 7α + sin 5α
= 2 sin (7α + 5α)/2 cos (7α - 5α)/2, [Since, sin α + sin β = 2 sin (α + β)/2 cos (α - β)/2]
= 2 sin 6α cos α
2. Express sin 7A + sin 4A as a product.
Solution:
sin 7A + sin 4A
= 2 sin (7A + 4A)/2 cos (7A - 4A)/2
= 2 sin (11A/2) cos (3A)/2
3. Express the sum or difference as a product: cos ∅ - cos 3∅.
Solution:
cos ∅ - cos 3∅
= 2 sin (∅ + 3∅)/2 sin (3∅ - ∅)/2
= 2 sin 2∅ ∙ sin ∅.
4. Express cos 5θ - cos 11θ as a product.
Solution:
cos 5θ - cos 11θ
= 2 sin (5θ + 11θ)/2 sin (11θ - 5θ), [Since, cos α - cos β = 2 sin (α + β)/2 sin (β - α)/2]
= 2 sin 8θ sin 3θ
5. Prove that, sin 55° - cos 55° = √2 sin 10°
Solution:
L.H.S. = sin 55° - cos 55°
= sin 55° - cos (90° - 35°)
= sin 55° - sin 35°
= 2cos (55° + 35°)/2 sin (55° - 35°)/2
= 2 cos 45° sin 10°
= 2 ∙ 1/(√2) sin 10°
= √2 sin 10° = R.H.S. Proved
6. Prove that sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
Solution:
L.H.S. = sin x + sin 3x + sin 5x + sin 7x
= (sin 7x + sin x) + (sin 5x + sin 3x)
= 2 sin (7x + x)/2 cos (7x - x)/2 + 2 sin (5x + 3x)/2 cos (5x - 3x)/2
= 2 sin 4x cos 3x + 2 sin 4x cos x
= 2 sin 4x (cos 3x + cos x)
= 2 sin 4x ∙ 2 cos (3x + x)/2 cos (3x - x)/2
= 4 sin 4x cos 2x cos x = R.H.S.
7. Prove that, sin 20° + sin 140° - cos 10° = 0
Solution:
L.H.S. = sin 20° + sin 140° - cos 10°
= 2 ∙ sin (140° + 20°)/2 cos (140° - 20°)/2 - cos 10°, [Since sin C + sin D = 2 sin (C + D)/2 cos (C - D)/2]
= 2 sin 80° ∙ cos 60° - cos 10°
= 2 ∙ sin (90° - 10°) ∙ 1/2 - cos 10° [Since, cos 60° = 1/2]
= cos 10° - cos 10°
= 0 = R.H.S. Proved
8. Prove that cos 20° cos 40° cos 80° = 1/8
Solution:
cos 20° cos 40° cos 80°
= ½ cos 40° (2 cos 80° cos 20°)
= ½ cos 40° [cos (80° + 20°) + cos (80° - 20°)]
= ½ cos 40° (cos 100° + cos 60°)
= ½ cos 40° (cos 100° + ½)
= ½ cos 40° cos 100° + ¼ cos 40°
= ¼ (2 cos 40° cos 100°) + ¼ cos 40°
= ¼ [cos (40° + 100°) + cos (40° - 100°)] + ¼ cos 40°
= ¼ [cos 140° + cos (-60°)] + ¼ cos 40°
= ¼ [cos 140° + cos 60°] + ¼ cos 40°
= ¼ [cos 140° + ½] + ¼ cos 40°
= ¼ cos 140° + 1/8 + ¼ cos 40°
= ¼ cos (180° - 40°) + 1/8 + ¼ cos 40°
= - ¼ cos 40° + 1/8 + ¼ cos 40°
= 1/8 = R.H.S. Proved
9. Prove that, sin 20° sin 40° sin 60° sin 80°= 3/16
Solution:
L.H.S. = sin 20° ∙ sin 40° ∙ (√3)/2 ∙ sin 80°
= (√3)/4 ∙ sin 20° (2 sin 40° sin 80°)
= (√3)/4 ∙ sin 20° [cos (80° - 40°) - cos (80° + 40°)], [Since 2 sin A sin B = cos (A - B) - cos (A + B)]
= (√3)/4 ∙ sin 20° [cos 40° - cos 120°]
= (√3)/8 [2 sin 20° cos 40° - 2 sin 20° ∙ (- 1/2)], [Since, cos 120° = cos (180° - 60°) = - cos 60° = -1/2]
= (√3)/8 [sin (40° + 20°) - sin(40° - 20°) + sin 20°]
= (√3)/8 [sin 60° - sin 20° + sin 20°]
= (√3)/8 ∙ (√3)/2
= 3/16 = R.H.S. Proved
10. Prove that, (sin ∅ sin 9∅ + sin 3∅ sin 5∅)/(sin ∅ cos 9∅ + sin 3∅cos 5∅) = tan 6∅
Solution:
L.H.S. = (sin ∅ sin 9∅+sin 3∅ sin 5∅)/(sin ∅ cos 9∅ +sin 3∅ cos 5∅)
= (2 sin ∅ sin 9∅ +2 sin 3∅ sin 5∅)/(2 sin ∅ cos 9∅ +2 sin 3∅ cos 5∅)
= (cos 8∅ - cos 10∅ + cos 2∅ - cos 8∅)/(sin 10∅ - sin 8∅ + sin 8∅ - sin 2∅) = (cos 2∅ - cos 10∅)/sin (10 ∅ - sin 2∅)
= (2 sin 6∅ sin 4∅)/(2 sin 6∅ sin 4∅ )
= tan 6∅ proved
11. Show that 2 cos π/13 cos 9π/13 + cos 3π/13 + cos 5π/13 = 0
Solution:
2 cos π/13 2 cos 9π/13 + cos 3π/13 + cos 5π/13
= 2 cos 9π/13 cos π/13 + cos 3π/13 + cos 5π/13
= cos (9π/13 + π/13) + cos (9π/13 - π/13) + cos 3π/13 + cos 5π/13, [Since, 2 cos X cos Y = cos (X + Y) + cos (X - Y)]
= cos 10π/13 + cos 8π/13 + cos 3π/13 + cos 5π/13
= cos (π - cos 3π/13) + cos (π - cos 5π/13) + cos 3π/13 + cos 5π/13
= - cos 3π/13 - cos 5π/13 + cos 3π/13 + cos 5π/13
= 0
12. Express cos A - cos B + cos C - cos (A + B + C) in the product form.
Solution:
(cos A - cos B) + [cos C - cos (A + B + C)]
= 2 sin (A + B)/2 sin (B - A)/2 + 2 sin (C + A + B + C)/2 sin (A + B + C - C)/2
= 2 sin (A+B)/2 {sin (B - A)/2 + sin (A + B + 2C)/2}
= 2 sin (A + B)/2 {2 sin (B - A + A + B + 2C)/4 ∙ cos (A + B + 2C - B + A)/4}
= 4 sin (A + B)/2 sin (B + C)/2 cos (C + A)/2.
● Converting Product into Sum/Difference and Vice Versa
11 and 12 Grade Math
From Express the Sum or Difference as a Product to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Jan 15, 25 12:08 AM
Jan 14, 25 11:53 PM
Jan 14, 25 11:02 PM
Jan 14, 25 01:57 PM
Jan 14, 25 12:29 AM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.