Examples on Quadratic Equations

We will discuss here about some examples on quadratic equations.

We know many word problems involving unknown quantities can be translated into quadratic equations in one unknown quantity.


1. Two pipes working together can fill a tank in 35 minutes. If the large pipe alone can fill the tank in 24 minutes less than the time taken by the smaller pipe then find the time taken by each pipe working alone to fill the tank.

Solution:

Let the large pipe and smaller pipe working alone fill the tank in x minutes and y minutes respectively.

Therefore, the large pipe fills \(\frac{1}{x}\) of the tank in 1 minute and the smaller pipe fills \(\frac{1}{y}\) of the tank in 1 minute.


Therefore, two pipes working together can fill (\(\frac{1}{x}\) + \(\frac{1}{y}\)) of the tank in 1 minute.

Therefore, two pipes working together can fill 35(\(\frac{1}{x}\) + \(\frac{1}{y}\)) of the tank in 35 minutes.

From the question, 35(\(\frac{1}{x}\) + \(\frac{1}{y}\)) = 1 (whole being 1). ......................... (i)

Also, x + 24 =y (from the question). ......................... (ii)

Putting y = x + 24 in (i), 35(\(\frac{1}{x}\) + \(\frac{1}{x + 24}\)) = 1

⟹ 35\(\frac{x + 24 + x}{x(x + 24)}\) = 1

⟹ \(\frac{35(2x + 24)}{x(x + 24)}\) = 1

⟹ 35(2x + 24) = x(x + 24)

⟹ 70x + 35 × 24 = x\(^{2}\) + 24x

⟹ x\(^{2}\) - 46x - 840 = 0

⟹ x\(^{2}\) – 60x + 14x – 840 = 0

⟹ x(x - 60) + 14(x - 60) = 0

⟹ (x - 60)(x + 14) = 0

⟹ x - 60 = 0 or, x + 14 = 0

⟹ x = 60 or x = -14

But x cannot be negative. So, x = 60 and then y = x + 24 = 60 + 24 = 84.

Therefore, when working alone, the large pipe takes 60 minutes and the smaller pipe takes 84 minutes to fill the tank.

  

2. Find a positive number, which is less than its square by 30.

Solution:

Let the number be x

By the condition, x\(^{2}\) - x = 30

⟹ x\(^{2}\) - x - 30 = 0

⟹ (x - 6)(x + 5) = 0

⟹ Therefore,  x = 6, -5

As the number is positive, x = - 5 is not acceptable, Thus the required number is 6.


3. The product of the digits of a two-digit number is 12. If 36 is added to the number, a number is obtained which is the same as the number obtained by reversing the digits of the original number.

Solution:

Let the digit at the units place be x and that at the tens place be y.

Then, the number = 10y + x.

The number obtained by reversing the digits = 10x + y

From the question, xy = 12 ................... (i)

10y + x + 36 = 10x + y ........................... (ii)

From (ii), 9y - 9x + 36 = 0

⟹ y – x + 4 =0

⟹ y = x – 4 .................................. (iiii)

Putting y = x- 4 in (i), x(x – 4) =12

⟹ x\(^{2}\) – 4x – 12 = 0

⟹ x\(^{2}\) – 6x + 2x – 12 = 0

⟹ x(x – 6) + 2(x – 6) = 0

⟹ (x – 6)(x + 2) = 0

⟹ x – 6 = 0 or x + 2 = 0

⟹ x = 6 or x = -2

But a digit in a number cannot be negative. So, x ≠ -2.

Therefore, x = 6.

Therefore, from (iii), y = x – 4 = 6 – 4 = 2.

Thus, the original number 10y + x = 10 × 2 + 6 = 20 + 6 = 26.

 

4. After completing a journey of 84 km. A cyclist noticed that he would take 5 hours less, if he could travel at a speed which is 5 km/hour more. What was the speed of cyclist in km/hour?

Solution:

Suppose, the cyclist has travelled with a speed of x km/hour

Therefore, by the condition \(\frac{84}{x}\) - \(\frac{84}{x + 5}\) = 5

⟹ \(\frac{84x + 420 - 84x}{x(x + 5)}\)= 5

⟹ \(\frac{420}{x^{2} + 5x}\) = 5

⟹ 5(x\(^{2}\) + 5x) = 420

⟹ x\(^{2}\) + 5x - 84 = 0

⟹ (x + 12)(x - 7) = 0

Therefore, x = -12, 7

But x ≠- 12, because speed cannot be negative

x = 7

Therefore, the cyclist has travelled with a speed of 7 km/hour.

Quadratic Equation

Introduction to Quadratic Equation

Formation of Quadratic Equation in One Variable

Solving Quadratic Equations

General Properties of Quadratic Equation

Methods of Solving Quadratic Equations

Roots of a Quadratic Equation

Examine the Roots of a Quadratic Equation

Problems on Quadratic Equations

Quadratic Equations by Factoring

Word Problems Using Quadratic Formula

Examples on Quadratic Equations 

Word Problems on Quadratic Equations by Factoring

Worksheet on Formation of Quadratic Equation in One Variable

Worksheet on Quadratic Formula

Worksheet on Nature of the Roots of a Quadratic Equation

Worksheet on Word Problems on Quadratic Equations by Factoring







9th Grade Math

From Examples on Quadratic Equations to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More