How to find the exact value of tan 15° using the value of sin 30°?
Solution:
For all values of the angle A we know that, (sin \(\frac{A}{2}\) + cos \(\frac{A}{2}\))\(^{2}\) = sin\(^{2}\) \(\frac{A}{2}\) + cos\(^{2}\) \(\frac{A}{2}\) + 2 sin \(\frac{A}{2}\) cos \(\frac{A}{2}\) = 1 + sin A
Therefore, sin \(\frac{A}{2}\) + cos \(\frac{A}{2}\) = ± √(1 + sin A), [taking square root on both the sides]
Now, let A = 30° then, \(\frac{A}{2}\) = \(\frac{30°}{2}\) = 15° and from the above equation we get,
sin 15° + cos 15° = ± √(1 + sin 30°) ….. (i)
Similarly, for all values of the angle A we know that, (sin \(\frac{A}{2}\) - cos \(\frac{A}{2}\))\(^{2}\) = sin\(^{2}\) \(\frac{A}{2}\) + cos\(^{2}\) \(\frac{A}{2}\) - 2 sin \(\frac{A}{2}\) cos \(\frac{A}{2}\) = 1 - sin A
Therefore, sin \(\frac{A}{2}\) - cos \(\frac{A}{2}\) = ± √(1 - sin A), [taking square root on both the sides]
Now, let A
= 30° then, \(\frac{A}{2}\) = \(\frac{30°}{2}\) = 15° and from the above
equation we get,
sin 15° - cos 15° = ± √(1 - sin 30°) …… (ii)
Clearly, sin 15° > 0 and cos 15˚ > 0
Therefore, sin 15° + cos
15° > 0
Therefore, from (i) we get,
sin 15° + cos 15° = √(1 + sin 30°) ..... (iii)
Again, sin 15° - cos 15° = √2
(\(\frac{1}{√2}\) sin 15˚ - \(\frac{1}{√2}\) cos 15˚)
or, sin 15° - cos 15° = √2 (cos 45° sin 15˚
- sin 45° cos 15°)
or, sin 15° - cos 15° = √2 sin (15˚ - 45˚)
or, sin 15° - cos 15° = √2 sin (- 30˚)
or, sin 15° - cos 15° = -√2 sin 30°
or, sin 15° - cos 15° = -√2 ∙ \(\frac{1}{2}\)
or, sin 15° - cos 15° = - \(\frac{√2}{2}\)
Thus, sin 15° - cos 15° < 0
Therefore, from (ii) we get, sin 15° - cos 15°= -√(1 - sin 30°) ..... (iv)
Now, adding (iii) and (iv) we
get,
2 sin 15° = \(\sqrt{1 + \frac{1}{2}} - \sqrt{1 - \frac{1}{2}}\)
2 sin 15° = \(\frac{\sqrt{3} - 1}{\sqrt{2}}\)
sin 15° = \(\frac{\sqrt{3} - 1}{2\sqrt{2}}\)
Therefore, sin 15° = \(\frac{\sqrt{3} - 1}{2\sqrt{2}}\)
Similarly, subtracting (iv) from (iii) we get,
2 cos 15° = \(\sqrt{1 + \frac{1}{2}} + \sqrt{1 - \frac{1}{2}}\)
2 cos 15° = \(\frac{\sqrt{3} + 1}{\sqrt{2}}\)
cos 15° = \(\frac{\sqrt{3} + 1}{2\sqrt{2}}\)
Therefore, cos 15° = \(\frac{\sqrt{3} + 1}{2\sqrt{2}}\)
Now, tan 15° = \(\frac{sin 15°}{cos 15°}\)
= \(\frac{\frac{\sqrt{3} - 1}{2\sqrt{2}}}{\frac{\sqrt{3} + 1}{2\sqrt{2}}}\)
= \(\frac{\sqrt{3} - 1}{\sqrt{3} + 1}\)
Thus, tan 15° = \(\frac{\sqrt{3} - 1}{\sqrt{3} + 1}\)
11 and 12 Grade Math
From Exact Value of tan 15° to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Nov 23, 24 03:45 PM
Nov 23, 24 03:14 PM
Nov 23, 24 02:51 PM
Nov 23, 24 12:22 AM
Nov 22, 24 12:34 AM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.