How to find the exact value of tan 142½° using the value of sin 15° and cos 15°?
Solution:
For all values of the angle A and B we know that, tan (A + B) = \(\frac{tan A + tan B}{1 - tan A tan B}\),
sin A = 2 sin \(\frac{A}{2}\) cos \(\frac{A}{2}\)
and
cos A = cos\(^{2}\) \(\frac{A}{2}\) – sin\(^{2}\) \(\frac{A}{2}\)
Now tan 142½°
= tan (90 + 52½°)
= - cot 52½°
= \(\frac{-1}{tan 52½°}\)
= \(\frac{-1}{tan (45° + 7½°}\)
= - \(\frac{1 - tan 7½°}{1 + tan 7½°}\)
= - \(\frac{cos 7½° - sin 7½°}{cos 7½° + sin 7½°}\)
= - \(\frac{(cos 7½° - sin 7½°)(cos 7½° - sin 7½°)}{(cos 7½° + sin 7½°)(cos 7½° - sin 7½°)}\)
= - \(\frac{(cos 7½° - sin 7½°)^{2}}{cos^{2} 7½° - sin^{2} 7½°}\)
= - \(\frac{1 - 2 sin 7½° cos 7½°}{cos^{2} 7½° - sin^{2} 7½°}\)
= - \(\frac{1 - sin 15°}{cos 15°}\)
= - \(\frac{1 - sin (45° - 30°)}{cos (45° - 30°)}\)
= - \(\frac{1 - \frac{\sqrt{3} - 1}{2\sqrt{2}}}{\frac{\sqrt{3} + 1}{2\sqrt{2}}}\)
= - \(\frac{2√2 - √3 + 1}{√3 + 1}\)
= - \(\frac{(2√2 - √3 + 1)}{(√3 + 1)}\) \(\frac{(√3 - 1)}{(√3 - 1)}\)
= - \(\frac{(2√2 - √3 + 1)(√3 - 1)}{3 - 1}\)
= - \(\frac{(2√2(√3 - 1) - (√3 - 1)^{2}}{2}\)
= -[√2(√3 - 1) – (2 - √3)]
= -√6 + √2 + 2 - √3
= 2 + √2 - √3 - √6
11 and 12 Grade Math
From Exact Value of tan 142 and Half Degree to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Nov 23, 24 03:45 PM
Nov 23, 24 03:14 PM
Nov 23, 24 02:51 PM
Nov 23, 24 12:22 AM
Nov 22, 24 12:34 AM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.