Exact Value of cos 72°

We will learn to find the exact value of cos 72 degrees using the formula of submultiple angles.


How to find the exact value of cos 72°?

Let, A = 18°                        

Therefore, 5A = 90° 

⇒ 2A + 3A = 90˚

⇒ 2A = 90˚ - 3A

Taking sine on both sides, we get 

sin 2A = sin (90˚ - 3A) = cos 3A 

⇒ 2 sin A cos A = 4 cos\(^{3}\) A - 3 cos A

⇒ 2 sin A cos A - 4 cos\(^{3}\) A + 3 cos A = 0

⇒ cos A (2 sin A - 4 cos\(^{2}\) A + 3) = 0 

Dividing both sides by cos A = cos 18˚ ≠ 0, we get

⇒ 2 sin A - 4 (1 - sin\(^{2}\) A) + 3 = 0

⇒ 4 sin\(^{2}\) A + 2 sin A - 1 = 0, which is a quadratic in sin A

Therefore, sin A = \(\frac{-2 \pm \sqrt{- 4 (4)(-1)}}{2(4)}\)

⇒ sin A = \(\frac{-2 \pm \sqrt{4 + 16}}{8}\)

⇒ sin A = \(\frac{-2 \pm 2 \sqrt{5}}{8}\)

⇒ sin A = \(\frac{-1 \pm \sqrt{5}}{4}\)

sin 18° is positive, as 18° lies in first quadrant.

Therefore, sin 18° = sin A = \(\frac{√5 - 1}{4}\)

Now, cos 72° = cos (90° - 18°) = sin 18° = \(\frac{√5 - 1}{4}\)



 Submultiple Angles





11 and 12 Grade Math

From Exact Value of cos 72° to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?