Equation of the Common Chord of Two Circles

We will learn how to find the equation of the common chord of two circles.

Let us assume that the equations of the two given intersecting circles be x\(^{2}\) + y\(^{2}\) + 2g\(_{1}\)x + 2f\(_{1}\)y + c\(_{1}\) = 0 ……………..(i) and x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\) = 0 ……………..(ii), intersect at P (x\(_{1}\), y\(_{1}\)) and Q (x\(_{2}\), y\(_{2}\)).

Now we need to find the equation of the common chord PQ of the given circles.

Now we observe from the above figure that the point P (x\(_{1}\), y\(_{1}\)) lies on both the given equations. 

Therefore, we get,

x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2g\(_{1}\)x\(_{1}\) + 2f\(_{1}\)y\(_{1}\) + c\(_{1}\) = 0 ……………..(iii)    


x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2g\(_{2}\)x\(_{1}\) + 2f\(_{2}\)y\(_{1}\) + c\(_{2}\) = 0 ……………..(iv)

Now subtracting the equation (4) from equation (3) we get,

2(g\(_{1}\) -  g\(_{2}\))x\(_{1}\) + 2 (f\(_{1}\) - f\(_{2}\))y\(_{1}\) + C\(_{1}\) - C\(_{2}\) = 0 ……………..(v)

Again, we observe from the above figure that the point Q (x2, y2) lies on both the given equations. Therefore, we get,


x\(_{2}\)\(^{2}\) + y\(_{2}\)\(^{2}\) + 2g\(_{1}\)x\(_{2}\) + 2f\(_{1}\)y\(_{2}\) + c\(_{1}\) = 0 ……………..(vi)


x\(_{2}\)\(^{2}\) + y\(_{2}\)\(^{2}\) + 2g\(_{2}\)x\(_{2}\) + 2f\(_{2}\)y\(_{2}\) + c\(_{2}\) = 0 ……………..(vii)

Now subtracting the equation (b) from equation (a) we get,

2(g\(_{1}\) -  g\(_{2}\))x\(_{2}\) + 2 (f\(_{1}\) - f\(_{2}\))y\(_{2}\) + C\(_{1}\) - C\(_{2}\) = 0 ……………..(viii)

From conditions (v) and (viii) it is evident that the points P (x\(_{1}\), y\(_{1}\)) and Q (x\(_{2}\), y\(_{2}\)) lie on 2(g\(_{1}\) -  g\(_{2}\))x + 2 (f\(_{1}\) - f\(_{2}\))y + C\(_{1}\) - C\(_{2}\) = 0, which is a linear equation in x and y.

It represents the equation of the common chord PQ of the given two intersecting circles.

 

Note: While finding the equation of the common chord of two given intersecting circles first we need to express each equation to its general form i.e., x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 then subtract one equation of the circle from the other equation of the circle.


Solve example to find the equation of the common chord of two given circles:

1. Determine the equation of the common chord of the two intersecting circles x\(^{2}\) + y\(^{2}\) - 4x - 2y - 31 = 0 and 2x\(^{2}\) + 2y\(^{2}\) - 6x + 8y - 35 = 0 and prove that the common chord is perpendicular to the line joining the centers of the two circles.

Solution:

The given two intersecting circles are

x\(^{2}\) + y\(^{2}\) - 4x - 2y - 31 = 0 ……………..(i) and

2x\(^{2}\) + 2y\(^{2}\) - 6x + 8y - 35 = 0              

⇒ x\(^{2}\) + y\(^{2}\) - 3x + 4y - \(\frac{35}{2}\) ……………..(ii)

Now, to find the equation of the common chord of two intersecting circles we will subtract the equation (ii) from the equation (i).

Therefore, the equation of the common chord is

x\(^{2}\) + y\(^{2}\) - 4x - 2y - 31 - (x\(^{2}\) + y\(^{2}\) - 3x + 4y - \(\frac{35}{2}\)) = 0    

⇒ - x - 6y - \(\frac{27}{2}\) = 0            

2x + 12y + 27  = 0, which is the required equation.

The slope of the common chord 2x + 12y + 27 = 0 is (m\(_{1}\)) = -\(\frac{1}{6}\).

Centre of the circle x\(^{2}\) + y\(^{2}\) - 4x - 2y - 31 = 0 is (2, 1).

Centre of the circle 2x\(^{2}\) + 2y\(^{2}\) - 6x + 8y - 35 = 0 is (\(\frac{3}{2}\), -2).

The slope of the line joining the centres of the circles (1) and (2) is (m\(_{2}\)) = \(\frac{-2 - 1}{\frac{3}{2} - 2}\) = 6

Now m\(_{1}\) ∙ m\(_{2}\) = -\(\frac{1}{6}\) ∙ 6 = - 1

Therefore, we see that the slope of the common chord and slope of the line joining the centres of the circles (1) and (2) are negative reciprocals of each other i.e., m\(_{1}\) = -\(\frac{1}{m_{2}}\) i.e., m\(_{1}\) ∙ m\(_{2}\) = -1.

Therefore, the common chord of the given circles is perpendicular to the line joining the centers of the two circles.              Proved

 The Circle




11 and 12 Grade Math 

From Equation of the Common Chord of Two Circles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 22, 24 01:00 AM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More

  3. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Nov 22, 24 12:12 AM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  4. 2nd Grade Measurement Worksheet | Measuring Length, Mass and Volume

    Nov 20, 24 12:50 AM

    In 2nd Grade Measurement Worksheet you will get different types of questions on measurement of length, measurement of weight (mass), measurement of capacity (volume), addition of length, addition of w…

    Read More

  5. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 20, 24 12:16 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More