Equality of Complex Numbers

We will discuss about the equality of complex numbers.

Two complex numbers z\(_{1}\) = a + ib and z\(_{2}\) = x + iy are equal if and only if a = x and b = y i.e., Re (z\(_{1}\)) = Re (z\(_{2}\)) and Im (z\(_{1}\)) = Im (z\(_{2}\)).

Thus, z\(_{1}\) = z\(_{2}\) ⇔ Re (z\(_{1}\)) = Re (z\(_{2}\)) and Im (z\(_{1}\)) = Im (z\(_{2}\)).

For example, if the complex numbers z\(_{1}\) = x + iy and z\(_{2}\) = -5 + 7i are equal, then x = -5 and y = 7.


Solved examples on equality of two complex numbers:

1. If z\(_{1}\) = 5 + 2yi and z\(_{2}\) = -x + 6i are equal, find the value of x and y.

Solution:

The given two complex numbers are z\(_{1}\) = 5 + 2yi and z\(_{2}\) = -x + 6i.

We know that, two complex numbers z\(_{1}\) = a + ib and z\(_{2}\) = x + iy are equal if a = x and b = y.

z\(_{1}\) = z\(_{2}\)

⇒ 5 + 2yi = -x + 6i

⇒ 5 = -x and 2y = 6

⇒ x = -5 and y = 3

Therefore, the value of x = -5 and the value of y = 3.

 

2. If a, b are real numbers and 7a + i(3a - b) = 14 - 6i, then find the values of a and b.

Solution:

Given, 7a + i(3a - b) = 14 - 6i

⇒ 7a + i(3a - b) = 14 + i(-6)

Now equating real and imaginary parts on both sides, we have

7a = 14 and 3a - b = -6

⇒ a = 2 and 3 2 – b = -6

⇒ a = 2 and 6 – b = -6

⇒ a = 2 and – b = -12

⇒ a = 2 and b = 12

Therefore, the value of a = 2 and the value of b = 12.

 

3. For what real values of m and n are the complex numbers m\(^{2}\) – 7m + 9ni and n\(^{2}\)i + 20i -12 are equal.

Solution:

Given complex numbers are m\(^{2}\) - 7m + 9ni and n\(^{2}\)i + 20i -12

According to the problem,

m\(^{2}\) - 7m + 9ni = n\(^{2}\)i + 20i -12

⇒ (m\(^{2}\) - 7m) + i(9n) = (-12) + i(n\(^{2}\) + 20)

Now equating real and imaginary parts on both sides, we have

m\(^{2}\) - 7m = - 12 and 9n = n\(^{2}\) + 20

⇒ m\(^{2}\) - 7m + 12 = 0 and n\(^{2}\) - 9n + 20 = 0

⇒ (m - 4)(m - 3) = 0 and (n - 5)(n - 4) = 0

⇒ m = 4, 3 and n = 5, 4

Hence, the required values of m and n are follows:

m = 4, n = 5; m = 4, n = 4; m = 3, n = 5; m = 3, n = 4.




11 and 12 Grade Math 

From Equality of Complex Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More