Intercept
In the figure given above, XY is a transversal cutting the line L1 and L2 at P and Q respectively. The line segment PQ is called the intercept made on the transversal XY by the lines L1 and L2.
If a transversal makes equal intercepts on three or more parallel lines then any other transversal cutting them will also make equal intercepts.
Given: Let there be three straight lines L1, L2, and L3 such that L1 ∥ L2 ∥ L3.
Transversal AB makes equal intercepts on L1, L2 and L3, I.e., PQ = QR. Another transversal CD makes intercepts KM and MN.
To Prove: KM = MN.
Construction: Join PN which cuts the L2 at O.
Proof:
Statement |
Reason |
1. PQ = QR and QO ∥ line L3. |
1. Given. |
2. O is the midpoint of PN, i.e., PO = ON. |
2. By converse of Midpoint Theorem. |
3. PO = ON and OM ∥ L1. |
3. By statement 2 and given. |
4. M is the midpoint of NK, i.e., KM = MN (Proved) |
4. By converse of Midpoint Theorem. |
From Equal Intercepts Theorem to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Nov 25, 24 01:18 AM
Nov 25, 24 01:09 AM
Nov 25, 24 12:48 AM
Nov 25, 24 12:17 AM
Nov 24, 24 11:01 PM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.