Elimination of Trigonometric Ratios
Here we will learn about the elimination of
trigonometric ratios with the help of different types of problems.
In order to eliminate the T-ratios from the
given relations, we make use of the fundamental trigonometrical identities, in
the following examples.
Worked-out
examples on elimination of trigonometric ratios:
1. If sin θ + sin
2 θ = 1, prove that cos
2 θ + cos
4 θ = 1
Solution:
sin θ + sin
2 θ = 1
⇒ sin θ = 1 - sin
2 θ, [subtract sin
2 θ from both the sides]
⇒ sin θ = cos
2 θ, [since, 1 – sin
2 θ = cos
2 θ]
⇒ sin
2 θ = cos
4 θ, [squaring both the sides]
⇒ 1 - cos
2 θ = cos
4 θ, [since sin
2 θ = 1 – cos
2 θ]
⇒ 1 = cos
4 θ + cos
2 θ, [adding cos
2 θ on both the sides]
⇒ cos
4 θ + cos
2 θ = 1
Therefore, cos
2 θ + cos
4 θ = 1
2. If (cos θ + sin θ) = √2 cos θ, shown that (cos θ - sin θ) = √2 sin θ
Solution:
(cos θ + sin θ) = √2 cos θ ………… (A)
⇒ (cos θ + sin θ)
2 = 2 cos
2 θ, [squaring both the sides]
⇒ cos
2 θ + sin
2 θ + 2 sin θ cos θ = 2 cos
2 θ
⇒ 2 sin θ cos θ = 2 cos
2 θ - cos
2 θ - sin
2 θ
⇒ 2 sin θ cos θ = cos
2 θ - sin
2 θ
⇒ cos
2 θ - sin
2 θ = 2 sin θ cos θ
⇒ (cos θ + sin θ) (cos θ - sin θ) = 2 sin θ cos θ
⇒ (√2 cos θ) (cos θ - sin θ) = 2 sin θ cos θ ………… using (A)
⇒ (cos θ - sin θ) = (2 sin θ cos θ)/(√2 cos θ)
⇒ (cos θ - sin θ) = √2 sin θ
Therefore, (cos θ - sin θ) = √2 sin θ
3. If 3 sin θ + 5 cos θ = 5, prove that (5 sin θ - 3 cos θ) = ± 3.
Solution:
(3 sin θ + 5 cos θ)
2 + (5 sin θ - 3 cos θ)
2
= (9 sin
2 θ + 25 cos
2 θ + 30 sin θ cos θ) + (25 sin
2 θ + 9 cos
2 θ - 30 sin θ cos θ)
= 34 sin
2 θ + 34 cos
2 θ
= 34 (sin
2 θ + cos
2 θ)
= 34 (1)
= 34
⇒ (3 sin θ + 5 cos θ)
2 + (5 sin θ - 3 cos θ)
2 = 34
⇒ (5)
2 + (5 sin θ - 3 cos θ)
2 = 34, [since, (3 sin θ + 5 cos θ) = 5]
⇒ 25 + (5 sin θ - 3 cos θ)
2 = 34
⇒ (5 sin θ - 3 cos θ)
2 = 9 [subtract 25 from both the sides]
⇒ (5 sin θ - 3 cos θ) = ± 3
Therefore, (5 sin θ - 3 cos θ) = ± 3.
The above problems on elimination of trigonometric ratios are explained step-by-step so, that students get the clear concept how to make use of the fundamental trigonometrical identities.
● Trigonometric Functions
10th Grade Math
From Elimination of Trigonometric Ratios to HOME PAGE
Didn't find what you were looking for? Or want to know more information
about Math Only Math.
Use this Google Search to find what you need.
Share this page:
What’s this?
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.