Dividing Fractions

We will discuss here about dividing fractions by a whole number, by a fractional number or by another mixed fractional number.


First let us recall how to find reciprocal of a fraction, we interchange the numerator and the denominator.

For example, the reciprocal of ¾ is 4/3.

Division of Fractions

Find the reciprocal of 3 ¾

The reciprocal of 3 ¾ is 4/15.

Division of Fractions Reciprocal

I. Division of a Fraction by a Whole Number:

4 ÷ 2 = 2 means, there are two 2’s in 4.

6 ÷ 2 = 3 means, there are two 2’s in 6.

Similarly 5 ÷ \(\frac{1}{2}\) means, how many halves are there in 5?

We know that \(\frac{1}{2}\) + \(\frac{1}{2}\) = 1

\(\frac{1}{2}\) + \(\frac{1}{2}\)   +

\(\frac{1}{2}\) + \(\frac{1}{2}\)   +

\(\frac{1}{2}\) + \(\frac{1}{2}\)   +

\(\frac{1}{2}\) + \(\frac{1}{2}\)   +

\(\frac{1}{2}\) + \(\frac{1}{2}\)

    1      + 

    1      + 

    1      + 

    1      + 

    1 

=   5

i.e. there are 10 halves in 5.

5 ÷ \(\frac{1}{2}\) = 5 × \(\frac{2}{1}\) = \(\frac{10}{1}\) = 10


For Example:

1. \(\frac{7}{10}\) ÷ 5 = \(\frac{7}{10}\) ÷ \(\frac{5}{1}\)

= \(\frac{7}{10}\) × \(\frac{1}{5}\)

= \(\frac{7 × 1}{10 × 5}\)

= \(\frac{7}{50}\)


2. What is \(\frac{10}{15}\) ÷ 5?

\(\frac{10}{15}\) ÷ \(\frac{5}{1}\)

= \(\frac{10}{15}\) × \(\frac{1}{5}\)

= \(\frac{2 × \not 5 × 1}{3 × \not 5 × 5}\)

= \(\frac{2}{15}\)

Prime Factors of 10, 5 and 3

              10 = 2 × 5

              15 = 3 × 5

                5 = 1 × 5


To divide a fraction by a number, multiply the fraction with the reciprocal of the number.

For example:

3. Divide 3/5 by 12

Solution:

3/5 ÷ 12

= 3/5 ÷ 12/1

= 3/5 × 1/12

= (3 × 1)/(5 × 12)

= 3/60

= 1/20


Step I: Find the reciprocal of the whole number and multiply with the fractional number as usual.

Step II: Express the product in its lowest terms.


4. Solve: 5/7 ÷ 10

= 5/7 ÷ 10/1

= 5/7 × 1/10

= (5 × 1)/(7 × 10)

= 5/70

Step I: Find the reciprocal of the whole number and multiply with the fractional number as usual.

Step II: Express the product in its lowest terms.


II. Division of a Fractional Number by a Fractional Number:

For example:

1. Divide 7/8 by 1/5

Solution:

7/8 ÷ 1/5

= 7/8 × 5/1

= (7 × 5)/(8 × 1)

= 35/8

= 4 3/8


Step I: Find reciprocal of 1/5.

Step II: Multiply 7/8 by it.

Step III: Express the product in its simplest form.


2. Divide: 5/9 ÷ 10/18

Solution:

5/9 ÷ 10/18

= 5/9 × 18/10

= (5 × 18)/(9 × 10)

= 90/90

= 1


Step I: Find reciprocal of 1/5.

Step II: Multiply 7/8 by it.

Step III: Express the product in its simplest form.

Division of a Fraction by a Fraction:

3. Divide \(\frac{3}{4}\) ÷ \(\frac{5}{3}\)

Step I: Multiply the first fraction with the reciprocal of the second fraction.

Reciprocal of \(\frac{5}{3}\) = \(\frac{3}{5}\)

Therefore, \(\frac{3}{4}\) ÷ \(\frac{5}{3}\)  = \(\frac{3}{4}\) × \(\frac{3}{5}\)

                           = \(\frac{3 × 3}{4 × 5}\)

                           = \(\frac{9}{20}\)

Step II: Reduce the fraction to the lowest terms. (if necessary)

4. Divide \(\frac{16}{27}\) ÷ \(\frac{4}{9}\)

Therefore, \(\frac{16}{27}\) ÷ \(\frac{4}{9}\) = \(\frac{16}{27}\) × \(\frac{9}{4}\); [Reciprocal of \(\frac{4}{9}\) = \(\frac{9}{4}\)]

                            = \(\frac{\not 2 × \not 2 × 2 × 2 × \not 3 × \not 3}{\not 3 × \not 3 × 3 × \not 2 × \not 2}\)

                            = \(\frac{4}{3}\)

                            = 1\(\frac{1}{3}\)

Prime Factors of 16, 27, 9 and 4

            16 = 2 × 2 × 2 × 2

            9 = 3 × 3

            27 = 3 × 3 × 3

            4 = 2 × 2


III. Division of a Mixed Number by another Mixed Number:

For example:

1. Divide 2 ¾ by 1 2/3

Solution:

2 ¾ ÷ 1 2/3

= 11/4 ÷ 5/3

= 11/4 × 3/5

= (11 × 3)/(4 × 5)

= 33/20

= 1 13/20


Express the mixed numbers as improper fractions and multiply as usual.


2. Divide: 2  4/17 ÷ 1  4/17

Solution:

2  4/17 ÷ 1  4/17

= 38/17 ÷ 21/17

= 38/17 × 17/21

= (38 × 17)/(17 × 21)

= 646/357

= 38/21

= 1 17/21


Express the mixed numbers as improper fractions and multiply as usual.


Questions and Answers on Dividing Fractions:

I. Divide the following.

(i) \(\frac{2}{6}\) ÷ \(\frac{1}{3}\)

(ii) \(\frac{5}{8}\) ÷ \(\frac{15}{16}\)

(iii) \(\frac{5}{6}\) ÷ 15

(iv) \(\frac{7}{8}\) ÷ 14

(v) \(\frac{2}{3}\) ÷ 6

(vi) 28 ÷ \(\frac{7}{4}\)

(vii) 2\(\frac{5}{6}\) ÷ 34

(viii) 9\(\frac{1}{2}\) ÷ \(\frac{38}{2}\)

(ix) 3\(\frac{1}{4}\) ÷ \(\frac{26}{28}\)

(x) 7\(\frac{1}{3}\) ÷ 1\(\frac{5}{6}\)

(xi) 2\(\frac{3}{5}\) ÷ 1\(\frac{11}{15}\)

(xii) 1\(\frac{1}{2}\) ÷ \(\frac{4}{7}\)

Related Concept

Fraction of a Whole Numbers

Representation of a Fraction

Equivalent Fractions

Properties of Equivalent Fractions

Like and Unlike Fractions

Comparison of Like Fractions

Comparison of Fractions having the same Numerator

Types of Fractions

Changing Fractions

Conversion of Fractions into Fractions having Same Denominator

Conversion of a Fraction into its Smallest and Simplest Form

Addition of Fractions having the Same Denominator

Subtraction of Fractions having the Same Denominator

Addition and Subtraction of Fractions on the Fraction Number Line




4th Grade Math Activities

From Dividing Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More