Difference of Compound Interest and Simple Interest

We will discuss here how to find the difference of compound interest and simple interest.

If the rate of interest per annum is the same under both simple interest and compound interest  then for 2 years, compound interest (CI) - simple interest (SI) = Simple interest for 1 year on “Simple interest for one year”.

Compound interest for 2 years – simple interest for two years

= P{(1 + \(\frac{r}{100}\))\(^{2}\) - 1} - \(\frac{P × r × 2}{100}\)

= P × \(\frac{r}{100}\) × \(\frac{r}{100}\)

= \(\frac{(P × \frac{r}{100}) × r × 1}{100}\)

= Simple interest for 1 year on “Simple interest for 1 year”.

Solve examples on difference of compound interest and simple interest:

1. Find the difference of the compound interest and simple interest on $ 15,000 at the same interest rate of 12\(\frac{1}{2}\) % per annum for 2 years.

Solution:

In case of Simple Interest:

Here,

P = principal amount (the initial amount) = $ 15,000

Rate of interest (r) = 12\(\frac{1}{2}\) % per annum = \(\frac{25}{2}\) % per annum = 12.5 % per annum

Number of years the amount is deposited or borrowed for (t) = 2 year

Using the simple interest formula, we have that

Interest = \(\frac{P × r × 2}{100}\)

           = $ \(\frac{15,000 × 12.5  × 2}{100}\)

           = $ 3,750

Therefore, the simple interest for 2 years = $ 3,750

In case of Compound Interest:

Here,

P = principal amount (the initial amount) = $ 15,000

Rate of interest (r) = 12\(\frac{1}{2}\) % per annum = \(\frac{25}{2}\) % per annum = 12.5 % per annum

Number of years the amount is deposited or borrowed for (n) = 2 year

Using the compound interest when interest is compounded annually formula, we have that

A = P(1 + \(\frac{r}{100}\))\(^{n}\)

A = $ 15,000 (1 + \(\frac{12.5}{100}\))\(^{2}\)

   = $ 15,000 (1 + 0.125)\(^{2}\)

   = $ 15,000 (1.125)\(^{2}\)

   = $ 15,000 × 1.265625

   = $ 18984.375

Therefore, the compound interest for 2 years = $ (18984.375 - 15,000)

                                                             = $ 3,984.375

Thus, the required difference of the compound interest and simple interest = $ 3,984.375 - $ 3,750 = $ 234.375.

2. What is the sum of money on which the difference between simple and compound interest in 2 years is $ 80 at the interest rate of 4% per annum?

Solution:

In case of Simple Interest:

Here,

Let P = principal amount (the initial amount) = $ z

Rate of interest (r) = 4 % per annum

Number of years the amount is deposited or borrowed for (t) = 2 year

Using the simple interest formula, we have that

Interest = \(\frac{P × r × 2}{100}\)

           = $ \(\frac{z × 4  × 2}{100}\)

           = $ \(\frac{8z}{100}\)

           = $ \(\frac{2z}{25}\)

Therefore, the simple interest for 2 years = $ \(\frac{2z}{25}\)

In case of Compound Interest:

Here,

P = principal amount (the initial amount) = $ x

Rate of interest (r) = 4 % per annum

Number of years the amount is deposited or borrowed for (n) = 2 year

Using the compound interest when interest is compounded annually formula, we have that

A = P(1 + \(\frac{r}{100}\))\(^{n}\)

A = $ z (1 + \(\frac{4}{100}\))\(^{2}\)

   = $ z (1 + \(\frac{1}{25}\))\(^{2}\)

   = $ z (\(\frac{26}{25}\))\(^{2}\)

   = $ z × (\(\frac{26}{25}\)) × (\(\frac{26}{25}\))

   = $ (\(\frac{676z}{625}\))

So, the compound interest for 2 years = Amount – Principal

                                                    = $ (\(\frac{676z}{625}\)) - $ z

                                                    = $ (\(\frac{51z}{625}\))

Now, according to the problem, the difference between simple and compound interest in 2 years is $ 80

Therefore,

    (\(\frac{51z}{625}\)) - $ \(\frac{2z}{25}\) = 80

⟹ z(\(\frac{51}{625}\) - \(\frac{2}{25}\)) = 80

⟹ \(\frac{z}{625}\) = 80

⟹ z = 80 × 625

⟹ z = 50000

Therefore, the required sum of money is $ 50000

Compound Interest

Compound Interest

Compound Interest with Growing Principal

Compound Interest with Periodic Deductions

Compound Interest by Using Formula

Compound Interest when Interest is Compounded Yearly

Compound Interest when Interest is Compounded Half-Yearly

Compound Interest when Interest is Compounded Quarterly

Problems on Compound Interest

Variable Rate of Compound Interest

Practice Test on Compound Interest


Compound Interest - Worksheet

Worksheet on Compound Interest

Worksheet on Compound Interest with Growing Principal

Worksheet on Compound Interest with Periodic Deductions



8th Grade Math Practice 

From Difference of Compound Interest and Simple Interest to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 22, 24 01:00 AM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More

  3. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Nov 22, 24 12:12 AM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  4. 2nd Grade Measurement Worksheet | Measuring Length, Mass and Volume

    Nov 20, 24 12:50 AM

    In 2nd Grade Measurement Worksheet you will get different types of questions on measurement of length, measurement of weight (mass), measurement of capacity (volume), addition of length, addition of w…

    Read More

  5. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 20, 24 12:16 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More