Cube of the Sum of Two Binomials

What is the formula for the cube of the sum of two binomials?

To determine cube of a number means multiplying a number with itself three times similarly, cube of a binomial means multiplying a binomial with itself three times.



(a + b) (a + b) (a + b) = (a + b)3

or, (a + b) (a + b) (a + b) = (a + b) (a + b)2

                                    = (a + b) (a2 + 2ab + b2),
                                    [Using the formula of (a + b)2 = a2 + 2ab + b2]

                                    = a(a2 +2ab + b2) + b(a2 + 2ab + b2)

                                    = a3 + 2a2 b + ab2 + ba2 + 2ab2 + b3

                                    = a3 + 3a2 b + 3ab2 + b3



Therefore, (a + b)3 = a3 + 3a2 b + 3ab2 + b3

Thus, we can write it as; a = first term, b = second term

(First term + Second term)3 = (first term)3 + 3 (first term)2 (second term) + 3 (first term) (second term)2 + (second term)3

So, the formula for the cube of the sum of two terms is written as:

(a + b)3 = a3 + 3a2b + 3ab2 + b3

            = a3 + b3 + 3ab (a + b)


Worked-out examples to find the cube of the sum of two binomials:

1. Determine the expansion of (3x - 2y)3

Solution:

We know, (a + b)3 = a3 + 3a2 b + 3ab2 + b3

(3x - 2y)3

Here, a = 3x, b = 2y

= (3x)3 + 3 (3x)2 (2y) + 3 (3x)(2y)2 + (2y)3

= 27x3 + 3 (9x2) (2y) + 3 (3x)(4y2) + (8y3)

= 27x3 + 54x2y + 36xy2 + 8y3

Therefore, (3x - 2y)3 = 27x3 + 54x2y + 36xy2 + 8y3


2. Use the formula and evaluate (105)3.

Solution:

(105)3

= (100 + 5)3

We know, (a + b)3 = a3 + 3a2 b + 3ab2 + b3

Here, a = 100, b = 5

= (100)3 + 3 (100)2 (5) + 3 (100) (5)2 + (5)3

= 1000000 + 15 (10000) + 300 (25) + 125

= 1000000 + 150000 + 7500 + 125

= 1157625

Therefore, (105)3 = 1157625




3. Find the value of x3 + 27y3 if x + 3y = 5 and xy = 2.

Solution:

Given, x + 3y = 5

Now cube both sides we get,

(x + 3y)3 = (5)3

We know, (a + b)3 = a3 + 3a2 b + 3ab2 + b3

Here, a = x, b = 3y

⇒ x3 + 3 (x)2 (3y) + 3 (x)(3y)2 + (3y)3 = 343

⇒ x3 + 9(x)2 y + 27xy2 27y3 = 343

⇒ x3 + 9xy [x + 3y] + 27y3 = 343

Substituting the value of x + 3y = 5 and xy = 2, we get

⇒ x3 + 9 (2) (5) + 27y3 = 343

⇒ x3 + 90 + 27y3 = 343

⇒ x3 + 27y3 = 343 – 90

⇒ x3 +27y3 = 253

Therefore, x3 + 27y3 = 253

4. If x - \(\frac{1}{x}\)= 5, find the value of \(x^{3}\) - \(\frac{1}{x^{3}}\)

Solution:

x - \(\frac{1}{x}\) = 5

Cubing both sides, we get

 (x -  \(\frac{1}{x}\))\(^{3}\) =  \(5^{3}\)

\(x^{3}\) –  3 (x) (\(\frac{1}{x}\)) [ x - \(\frac{1}{x}\)] – (\(\frac{1}{x}\))\(^{3}\) = 216

\(x^{3}\)  – 3 (x - \(\frac{1}{x}\)) – \(\frac{1}{x^{3}}\) = 216                       

\(x^{3}\) –  \(\frac{1}{x^{3}}\) – 3 (x - \(\frac{1}{x}\)) = 216

\(x^{3}\) –  \(\frac{1}{x^{3}}\) – 3 × 5 = 216, [Putting the value of  x - \(\frac{1}{x}\)= 5]                  

\(x^{3}\) –  \(\frac{1}{x^{3}}\) – 15 = 216

\(x^{3}\) – \(\frac{1}{x^{3}}\) = 216 + 15                               

\(x^{3}\) – \(\frac{1}{x^{3}}\) = 231


Thus, to expand the cube of the sum of two binomials we can use the formula to evaluate.





7th Grade Math Problems

8th Grade Math Practice

From Cube of The Sum of Two Binomials to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Yesterday, Today and Tomorrow | Sequence of the Week-days

    Nov 25, 24 01:18 AM

    Practice the worksheet on yesterday, today and tomorrow, the questions are based on the sequence of the week-days, their names and order. We know, the present day is today, the day before today

    Read More

  2. Yesterday, Today and Tomorrow | Name of each Day of the Week

    Nov 25, 24 01:09 AM

    We will learn the relation between yesterday, today and tomorrow. There are seven days in a week. We know the name of each day of the week. Sunday is known as the first day of the week.

    Read More

  3. The Story about Seasons | Spring | Summer | Autumn | Winter

    Nov 25, 24 12:48 AM

    The Four Seasons
    Kids let’s enjoy the story about seasons. Here we will discuss about the four seasons and the duration. Some months are too hot and some are too cold. The period of hot months is called the hot

    Read More

  4. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Nov 25, 24 12:17 AM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 24, 24 11:01 PM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More