Cube of a Binomial

How do you get the cube of a binomial?

For cubing a binomial we need to know the formulas for the sum of cubes and the difference of cubes.

Sum of cubes:

The sum of a cubed of two binomial is equal to the cube of the first term, plus three times the square of the first term by the second term, plus three times the first term by the square of the second term, plus the cube of the second term.

(a + b)3 = a3 + 3a2b + 3ab2 + b3

            = a3 + 3ab (a + b) + b3

Difference of cubes:     

The difference of a cubed of two binomial is equal to the cube of the first term, minus three times the square of the first term by the second term, plus three times the first term by the square of the second term, minus the cube of the second term.



(a – b)3 = a3 – 3a2b + 3ab2 – b3

            = a3 – 3ab (a – b) – b3


Worked-out examples for the expansion of cube of a binomial:

Simplify the following by cubing:

1. (x + 5y)3 + (x – 5y)3

Solution:

We know, (a + b)3 = a3 + 3a2b + 3ab2 + b3

and,

(a – b)3 = a3 – 3a2b + 3ab2 – b3

Here, a = x and b = 5y

Now using the formulas for cube of two binomials we get,

= x3 + 3.x2.5y + 3.x.(5y)2 + (5y)3 + x3 - 3.x2.5y + 3.x.(5y)2 - (5y)3

= x3 + 15x2y + 75xy2 + 125 y3 + x3 - 15x2y + 75xy2 - 125 y3

= 2x3 + 150xy2

Therefore, (x + 5y)3 + (x – 5y)3 = 2x3 + 150xy2


2. \((\frac{1}{2} x + \frac{3}{2} y)^{3} + (\frac{1}{2} x - \frac{3}{2} y)^{3}\)

Solution:

Here a = \(\frac{1}{2} x, b = \frac{3}{2} y\)

 \(=(\frac{1}{2} x)^{3} + 3\cdot (\frac{1}{2} x)^{2} \cdot  \frac{3}{2} y + 3 \cdot \frac{1}{2} x \cdot (\frac{3}{2}y)^{2} + (\frac{3}{2}y)^{3} + (\frac{1}{2} x)^{3} - 3\cdot (\frac{1}{2} x)^{2} \cdot  \frac{3}{2} y + 3 \cdot \frac{1}{2} x \cdot (\frac{3}{2}y)^{2} - (\frac{3}{2}y)^{3}\)

 \(=\frac{1}{8} x^{3} + \frac{9}{8} x^{2} y + \frac{27}{8} x y^{2} + \frac{27}{8} y^{3} + \frac{1}{8} x^{3} - \frac{9}{8} x^{2} y + \frac{27}{8} x y^{2} - \frac{27}{8} y^{3}\)

 \(=\frac{1}{8} x^{3} + \frac{1}{8} x^{3} + \frac{27}{8} x y^{2} + \frac{27}{8} x y^{2}\)

 \(=\frac{1}{4} x^{3} + \frac{27}{4} x y^{2} \)

Therefore, \[(\frac{1}{2} x + \frac{3}{2} y)^{3} + (\frac{1}{2} x - \frac{3}{2} y)^{3} = \frac{1}{4} x^{3} + \frac{27}{4} x y^{2} \]


3. (2 – 3x)3 – (5 + 3x)3

Solution:

(2 – 3x)3 – (5 + 3x)3

= {23 - 3.22.(3x) + 3.2.(3x)2 - (3x)3} – {53 + 3.52.(3x) + 3.5.(3x)2 + (3x)3}

= {8 – 36x + 54 x2 - 27 x3} – {125 + 225x + 135x2 + 27 x3}

= 8 – 36x + 54 x2 - 27 x3 – 125 - 225x - 135x2 - 27 x3

= 8 – 125 – 36x - 225x + 54 x2 - 135x2 - 27 x3 - 27 x3

= -117 – 261x - 81 x2 - 54 x3

Therefore, (2 – 3x)3 – (5 + 3x)3 = -117 – 261x - 81 x2 - 54 x3


4. (5m + 2n)3 - (5m – 2n)3

Solution:

(5m + 2n)3 - (5m – 2n)3

= {(5m)3 + 3.(5m)2. (2n) + 3. (5m). (2n)2 + (2n)3} – {(5m)3 - 3.(5m)2. (2n) + 3. (5m). (2n)2 - (2n)3}

= {125 m3 + 150 m2 n + 60 m n2 + 8 n3} – {125 m3 - 150 m2 n + 60 m n2 - 8 n3}

= 125 m3 + 150 m2 n + 60 m n2 + 8 n3 – 125 m3 + 150 m2 n - 60 m n2 + 8 n3

= 125 m3 – 125 m3 + 150 m2 n + 150 m2 n + 60 m n2 - 60 m n2 + 8 n3 + 8 n3

= 300 m2 n + 16 n3

Therefore, (5m + 2n)3 - (5m – 2n)3 = 300 m2 n + 16 n3


The steps to find the mixed problem on cube of a binomial will help us to expand the sum or difference of two cubes.







7th Grade Math Problems

8th Grade Math Practice

From Cube of a Binomial to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Facts about Multiplication | Multiplication Sum | Answers

    Jan 15, 25 01:24 AM

    Facts about Multiplication Work
    Practice the worksheet on facts about multiplication. We know in multiplication, the number being multiplied is called the multiplicand and the number by which it is being multiplied is called the mul…

    Read More

  2. Facts about Multiplication | Multiplicand | Multiplier | Product

    Jan 15, 25 01:03 AM

    We have learnt multiplication of numbers with 2digit multiplier. Now, we will learn more. Let us know some facts about multiplication. 1. In multiplication, the number being multiplied is called the m…

    Read More

  3. Basic Multiplication Facts | Repeated Addition |Multiplication Process

    Jan 15, 25 12:23 AM

    Understanding Multiplication
    Some basic multiplication facts are needed to follow for multiplying numbers. The repeated addition of the same number is expressed by multiplication in short.

    Read More

  4. Properties of Multiplication | Multiplicative Identity | Whole Numbers

    Jan 15, 25 12:08 AM

    Properties of Multiplication of Whole Numbers
    There are six properties of multiplication of whole numbers that will help to solve the problems easily. The six properties of multiplication are Closure Property, Commutative Property, Zero Property…

    Read More

  5. Multiplication Table | Learn Tables from 0 – 25 | Multiplication Table

    Jan 14, 25 11:53 PM

    multiplication table
    In math multiplication table we will learn the tables from 0 – 25. These multiplication tables help the students to learn the essential multiplication facts. Multiplication tables are very important f…

    Read More