cos θ = 0

How to find the general solution of the equation cos θ = 0?

Prove that the general solution of cos θ = 0 is θ = (2n + 1)\(\frac{π}{2}\), n ∈ Z

Solution:

According to the figure, by definition, we have,

Cosine function is defined as the ratio of the side adjacent divided by the hypotenuse.

Let O be the centre of a unit circle. We know that in unit circle, the length of the circumference is 2π.

If we started from A and moves in anticlockwise direction then at the points A, B, A', B' and A, the arc length travelled are 0, \(\frac{π}{2}\), π, \(\frac{3π}{2}\), and 2π.

Therefore, from the above unit circle it is clear that 

cos θ = \(\frac{OM}{OP}\)

Now, cos θ = 0

⇒ \(\frac{OM}{OP}\) = 0

⇒ OM = 0.

So when will the cosine be equal to zero?

Clearly, if OM = 0 then the final arm OP of the angle θ coincides with OY or OY'.

Similarly, the final arm OP coincides with OY or OY' when θ = \(\frac{π}{2}\), \(\frac{3π}{2}\), \(\frac{5π}{2}\), \(\frac{7π}{2}\), ……….. , -\(\frac{π}{2}\), -\(\frac{3π}{2}\), -\(\frac{5π}{2}\), -\(\frac{7π}{2}\), ……….. i.e. when θ is  an odd  multiple  of \(\frac{π}{2}\)  i.e., when θ = (2n + 1)\(\frac{π}{2}\), where n ∈ Z (i.e., n = 0, ± 1, ± 2, ± 3, …….)

Hence, θ = (2n + 1)\(\frac{π}{2}\), n ∈ Z is the general solution of the given equation cos θ = 0


1. Find the general solution of the trigonometric equation cos 3x = 0

Solution:

cos 3x = 0

⇒ 3x = (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. [Since, we know that the general solution of the given equation cos θ = 0 is (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. ]

⇒ x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the general solution of the trigonometric equation cos 3x = 0 is x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….


2. Find the general solution of the trigonometric equation cos \(\frac{3x}{2}\) = 0

Solution:

cos 3x = 0

⇒ 3x = (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. [Since, we know that the general solution of the given equation cos θ = 0 is (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. ]

⇒ x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the general solution of the trigonometric equation cos 3x = 0 is x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

3. Find the general solutions of the equation 2 sin\(^{2}\) θ + sin\(^{2}\) 2θ = 2

Solution:

2 sin\(^{2}\) θ + sin\(^{2}\) 2θ = 2                    

⇒ sin\(^{2}\) 2θ + 2 sin\(^{2}\) θ - 2  = 0

4 sin\(^{2}\) θ cos\(^{2}\) θ - 2 (1 - sin\(^{2}\) θ) = 0

2 sin\(^{2}\) θ cos\(^{2}\) θ - cos\(^{2}\) θ = 0

cos\(^{2}\) θ (2 sin\(^{2}\) θ - 1) = 0

cos\(^{2}\) θ (1 - 2 sin\(^{2}\) θ) = 0

cos\(^{2}\) θ cos 2θ = 0

⇒  either cos\(^{2}\) θ = 0 or, cos 2θ = 0 

cos θ = 0 or, cos 2θ = 0 

⇒ θ = (2n + 1)\(\frac{π}{2}\)  or, 2θ = (2n + 1)\(\frac{π}{2}\) i.e., θ = (2n + 1)\(\frac{π}{2}\)

Therefore, the general solutions of the equation 2 sin\(^{2}\) θ + sin\(^{2}\) 2θ = 2 are  θ = (2n + 1)\(\frac{π}{2}\) and θ = (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, …….


4. Find the general solution of the trigonometric equation cos\(^{2}\) 3x = 0

Solution:

cos\(^{2}\) 3x = 0

cos 3x = 0

⇒ 3x = (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. [Since, we know that the general solution of the given equation cos θ = 0 is (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. ]

x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the general solution of the trigonometric equation cos 3x\(^{2}\) = 0 is x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….


5. What is the general solution of the trigonometric equation sin\(^{8}\) x + cos\(^{8}\) x =  \(\frac{17}{32}\)?

Solution:

(sin\(^{4}\) x + cos\(^{4}\) x)\(^{2}\) – 2 sin\(^{4}\) x  cos\(^{4}\) x =  \(\frac{17}{32}\)

[(sin\(^{2}\) x + cos\(^{2}\) x)\(^{2}\) - 2 sin\(^{2}\) x  cos\(^{2}\) x]\(^{2}\) -  \(\frac{(2 sinx cosx)^{4}}{8}\) = \(\frac{17}{32}\)

[1-  \(\frac{1}{2}\)sin\(^{2}\) 2x ]2  -  \(\frac{1}{8}\)sin\(^{4}\) 2x = \(\frac{17}{32}\)

32 [1- sin\(^{2}\) 2x +  \(\frac{1}{4}\) sin\(^{4}\) 2x] - 4  sin\(^{4}\) 2x = 17 

32 - 32 sin\(^{2}\) 2x + 8 sin\(^{4}\) 2x - 4 sin\(^{4}\) 2x – 17 = 0

4 sin\(^{4}\) 2x  - 32 sin\(^{2}\) 2x + 15 = 0

4 sin\(^{4}\) 2x -  2 sin\(^{2}\) 2x – 30 sin\(^{2}\) 2x + 15 = 0

2 sin\(^{2}\) 2x (2 sin\(^{2}\) 2x - 1) – 15 (2 sin\(^{2}\) 2x - 1) = 0

(2 sin\(^{2}\) 2x - 1) (2 sin\(^{2}\) 2x - 15) = 0

Therefore,

either, 2 sin\(^{2}\) 2x - 1 = 0 ……….(1) or, 2 sin\(^{2}\) 2x - 15  = 0 …………(2)

Now, from (1) we get,

 1 - 2 sin\(^{2}\) 2x = 0

  cos 4x = 0 

4x = (2n + 1)\(\frac{π}{2}\), where, n ∈ Z   

x = (2n + 1)\(\frac{π}{8}\), where, n ∈ Z

Again, from (2) we get, 2 sin\(^{2}\) 2x = 15

sin\(^{2}\) 2x =  \(\frac{15}{2}\) which is impossible, since the numerical value of sin 2x cannot  be  greater  than 1.

Therefore, the required general solution is: x = (2n + 1)\(\frac{π}{8}\), where, n ∈ Z

 Trigonometric Equations








11 and 12 Grade Math

From cos θ = 0 to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More