cos θ = 0

How to find the general solution of the equation cos θ = 0?

Prove that the general solution of cos θ = 0 is θ = (2n + 1)\(\frac{π}{2}\), n ∈ Z

Solution:

According to the figure, by definition, we have,

Cosine function is defined as the ratio of the side adjacent divided by the hypotenuse.

Let O be the centre of a unit circle. We know that in unit circle, the length of the circumference is 2π.

If we started from A and moves in anticlockwise direction then at the points A, B, A', B' and A, the arc length travelled are 0, \(\frac{π}{2}\), π, \(\frac{3π}{2}\), and 2π.

Therefore, from the above unit circle it is clear that 

cos θ = \(\frac{OM}{OP}\)

Now, cos θ = 0

⇒ \(\frac{OM}{OP}\) = 0

⇒ OM = 0.

So when will the cosine be equal to zero?

Clearly, if OM = 0 then the final arm OP of the angle θ coincides with OY or OY'.

Similarly, the final arm OP coincides with OY or OY' when θ = \(\frac{π}{2}\), \(\frac{3π}{2}\), \(\frac{5π}{2}\), \(\frac{7π}{2}\), ……….. , -\(\frac{π}{2}\), -\(\frac{3π}{2}\), -\(\frac{5π}{2}\), -\(\frac{7π}{2}\), ……….. i.e. when θ is  an odd  multiple  of \(\frac{π}{2}\)  i.e., when θ = (2n + 1)\(\frac{π}{2}\), where n ∈ Z (i.e., n = 0, ± 1, ± 2, ± 3, …….)

Hence, θ = (2n + 1)\(\frac{π}{2}\), n ∈ Z is the general solution of the given equation cos θ = 0


1. Find the general solution of the trigonometric equation cos 3x = 0

Solution:

cos 3x = 0

⇒ 3x = (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. [Since, we know that the general solution of the given equation cos θ = 0 is (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. ]

⇒ x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the general solution of the trigonometric equation cos 3x = 0 is x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….


2. Find the general solution of the trigonometric equation cos \(\frac{3x}{2}\) = 0

Solution:

cos 3x = 0

⇒ 3x = (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. [Since, we know that the general solution of the given equation cos θ = 0 is (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. ]

⇒ x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the general solution of the trigonometric equation cos 3x = 0 is x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

3. Find the general solutions of the equation 2 sin\(^{2}\) θ + sin\(^{2}\) 2θ = 2

Solution:

2 sin\(^{2}\) θ + sin\(^{2}\) 2θ = 2                    

⇒ sin\(^{2}\) 2θ + 2 sin\(^{2}\) θ - 2  = 0

4 sin\(^{2}\) θ cos\(^{2}\) θ - 2 (1 - sin\(^{2}\) θ) = 0

2 sin\(^{2}\) θ cos\(^{2}\) θ - cos\(^{2}\) θ = 0

cos\(^{2}\) θ (2 sin\(^{2}\) θ - 1) = 0

cos\(^{2}\) θ (1 - 2 sin\(^{2}\) θ) = 0

cos\(^{2}\) θ cos 2θ = 0

⇒  either cos\(^{2}\) θ = 0 or, cos 2θ = 0 

cos θ = 0 or, cos 2θ = 0 

⇒ θ = (2n + 1)\(\frac{π}{2}\)  or, 2θ = (2n + 1)\(\frac{π}{2}\) i.e., θ = (2n + 1)\(\frac{π}{2}\)

Therefore, the general solutions of the equation 2 sin\(^{2}\) θ + sin\(^{2}\) 2θ = 2 are  θ = (2n + 1)\(\frac{π}{2}\) and θ = (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, …….


4. Find the general solution of the trigonometric equation cos\(^{2}\) 3x = 0

Solution:

cos\(^{2}\) 3x = 0

cos 3x = 0

⇒ 3x = (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. [Since, we know that the general solution of the given equation cos θ = 0 is (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. ]

x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the general solution of the trigonometric equation cos 3x\(^{2}\) = 0 is x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….


5. What is the general solution of the trigonometric equation sin\(^{8}\) x + cos\(^{8}\) x =  \(\frac{17}{32}\)?

Solution:

(sin\(^{4}\) x + cos\(^{4}\) x)\(^{2}\) – 2 sin\(^{4}\) x  cos\(^{4}\) x =  \(\frac{17}{32}\)

[(sin\(^{2}\) x + cos\(^{2}\) x)\(^{2}\) - 2 sin\(^{2}\) x  cos\(^{2}\) x]\(^{2}\) -  \(\frac{(2 sinx cosx)^{4}}{8}\) = \(\frac{17}{32}\)

[1-  \(\frac{1}{2}\)sin\(^{2}\) 2x ]2  -  \(\frac{1}{8}\)sin\(^{4}\) 2x = \(\frac{17}{32}\)

32 [1- sin\(^{2}\) 2x +  \(\frac{1}{4}\) sin\(^{4}\) 2x] - 4  sin\(^{4}\) 2x = 17 

32 - 32 sin\(^{2}\) 2x + 8 sin\(^{4}\) 2x - 4 sin\(^{4}\) 2x – 17 = 0

4 sin\(^{4}\) 2x  - 32 sin\(^{2}\) 2x + 15 = 0

4 sin\(^{4}\) 2x -  2 sin\(^{2}\) 2x – 30 sin\(^{2}\) 2x + 15 = 0

2 sin\(^{2}\) 2x (2 sin\(^{2}\) 2x - 1) – 15 (2 sin\(^{2}\) 2x - 1) = 0

(2 sin\(^{2}\) 2x - 1) (2 sin\(^{2}\) 2x - 15) = 0

Therefore,

either, 2 sin\(^{2}\) 2x - 1 = 0 ……….(1) or, 2 sin\(^{2}\) 2x - 15  = 0 …………(2)

Now, from (1) we get,

 1 - 2 sin\(^{2}\) 2x = 0

  cos 4x = 0 

4x = (2n + 1)\(\frac{π}{2}\), where, n ∈ Z   

x = (2n + 1)\(\frac{π}{8}\), where, n ∈ Z

Again, from (2) we get, 2 sin\(^{2}\) 2x = 15

sin\(^{2}\) 2x =  \(\frac{15}{2}\) which is impossible, since the numerical value of sin 2x cannot  be  greater  than 1.

Therefore, the required general solution is: x = (2n + 1)\(\frac{π}{8}\), where, n ∈ Z

 Trigonometric Equations








11 and 12 Grade Math

From cos θ = 0 to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 3rd Grade Math Worksheets |3rd Grade Math Sheets|3rd Grade Math Lesson

    Jan 14, 25 02:50 PM

    3rd Grade Math Worksheets
    3rd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  2. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:57 PM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  3. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More

  4. Word Problems on Subtraction |Worksheet on Subtraction Word Problems |

    Jan 14, 25 12:21 AM

    Subtraction Problem
    In word problems on subtraction we need to read the question carefully and understand what we need to find out. We know, in subtraction the larger number from which we subtract the other number (the s…

    Read More

  5. Worksheet on Estimating Sums and Differences | Find the Estimated Sum

    Jan 13, 25 01:34 PM

    Estimate the Difference
    In 4th grade worksheet on estimating sums and differences, all grade students can practice the questions on estimations.This exercise sheet on estimating sums and differences can be practiced

    Read More