Converting Sum or Difference into Product

We will learn how to deal with the formula for converting sum or difference into product.

(i) the sum of two sines into a product of a pair of sine and cosine

(ii) the difference of two sines into a product of a pair of cosine and sine

(iii) the sum of two cosines into a product of two cosines       

(iv) the difference of two cosines into a product of two sines


If X and Y are any two real numbers or angles, then

(a) sin (X + Y) + sin (X - Y) = 2 sin X cos Y

(b) sin (X + Y) - sin (X - Y) = 2 cos X sin Y

(c) cos (X + Y) + cos (X - Y) = 2 cos X cos Y

(d) cos (X - Y) - cos (X + Y) = 2 sin X sin Y

(a), (b), (c) and (d) are considered as formulae of transformation from sum or difference to product.

Proof:

(a) We know that sin (X + Y) = sin X cos Y + cos X sin Y ……… (i)   

and sin (X - Y) = sin X cos Y - cos X sin Y ……… (ii)               

Adding (i) and (ii) we get,

sin (X + Y) + sin (X - Y) = 2 sin X cos Y  ………………..… (1)  


(b) We know that sin (X + Y) = sin X cos Y + cos X sin Y ……… (i)  

and sin (X - Y) = sin X cos Y - cos X sin Y ……… (ii)               

Subtracting (ii) from (i) we get,

sin (X + Y) - sin (X - Y) = 2 cos X sin Y  ………………..… (2)   


(c) We know that cos (X + Y) = cos X cos Y + sin X sin Y ……… (iii)

and cos (X - Y) = cos X cos Y - sin X sin Y ……… (iv)                            

Adding (iii) and (iv) we get,

cos (X + Y) + cos (X - Y) = 2 cos X cos Y  ………………..… (3)


(d) We know that cos (X + Y) = cos X cos Y + sin X sin Y ……… (iii)               

and cos (X - Y) = cos X cos Y - sin X sin Y ……… (iv)                            

Subtracting (iii) from (iv) we get,

cos (X - Y) - cos (X + Y) = 2 sin X sin Y  ………………..… (4)  

Let, X + Y = α and X - Y = β.

Then, we have, X = (α + β)/2 and B = (α - β)/2.

Clearly, formula (1), (2), (3) and (4) reduce to the following forms in terms of C and D:

sin α + sin β = 2 sin (α + β)/2 cos (α - β)/2      ………. (5)

sin α - sin β = 2 cos (α + β)/2 sin (α - β)/2  ………  (6)

cos α + cos β = 2 cos (α + β)/2 cos (α - β)/2      ……… (7)

And cos α - cos β = -2 sin (α + β)/2 sin (α - β)/2

⇒ cos α - cos β = 2 sin (α + β)/2 sin (β - α)/2     ……… (8)

Note: (i) Formula sin α + sin β = 2 sin (α + β)/2 cos (α - β)/2 is transform the sum of two sines into a product of a pair of sine and cosine.

(ii) Formula sin α - sin β = 2 cos (α + β)/2 sin (α - β)/2 is transform the difference of two sines into a product of a pair of cosine and sine.

(iii) Formula cos α + cos β = 2 cos (α + β)/2 cos (α - β)/2 is transform the sum of two cosines into a product of two cosines.

(iv) Formula cos α - cos β = 2 sin (α + β)/2 sin (β - α)/2 is transforms the difference of two cosines into a product of two sines.

 Converting Product into Sum/Difference and Vice Versa






11 and 12 Grade Math

From Converting Sum or Difference into Product to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Counting Numbers from 1 to 50 | Match the Number | Missing Numbers

    Apr 04, 25 03:46 PM

    Math Coloring Pages on Counting Number Oredr
    In counting numbers from 1 to 50, recognize the numbers, count and then join the numbers in the correct number order. Here we mainly need eye-hand coordination to draw the picture and maintain the num

    Read More

  2. Counting Eleven to Twenty with Numbers and Words |Numbers from 11 - 20

    Apr 04, 25 03:21 PM

    Counting eleven to twenty with numbers and words are explained below. One ten and one more is eleven. Eleven comes after ten. One ten and two more is twelve. Twelve comes after eleven.

    Read More

  3. 5th Grade BODMAS Rule Worksheet | PEMDAS | Order of operations|Answers

    Apr 03, 25 03:11 PM

    5th Grade BODMAS Rule Worksheet
    In 5th Grade BODMAS Rule Worksheet you will get different types of problems on mathematical expressions involving different operations, mathematical expression with 'brackets' and 'of' and simplifying…

    Read More

  4. Worksheet on Simplification | Simplify Expressions | BODMAS Questions

    Apr 03, 25 02:58 PM

    Worksheet on Simplification
    In worksheet on simplification, the questions are based in order to simplify expressions involving more than one bracket by using the steps of removal of brackets. This exercise sheet

    Read More

  5. Divisible by 2 Video |Test of Divisibility by 2 Trick| Rules| Examples

    Apr 03, 25 10:25 AM

    Divisible by 2
    A number is divisible by 2 if the digit at unit place is either 0 or multiple of 2. So a number is divisible by 2 if digit at its units place is 0, 2, 4, 6 or 8.

    Read More