Conversion of Mixed Recurring Decimals into Vulgar Fractions

Follow the steps for the conversion of mixed recurring decimals into vulgar fractions:

(i) First write the decimal form by removing the bar from the top and put it equal to x (any variable).

(ii) Now, find the number of digits having no bar after the decimal point.

(iii) Suppose there are n-digits without bar, multiply both sides by 10n, so that only the repeating decimal digit is on the right side of the decimal point.

(iv) Now write the repeating digits at least twice.

(v) Now, find the number of digits having bar after the decimal point.

(vi) Suppose there are n-digits having bar, multiply both sides by 10n.

(vii) Then subtract the number obtained in step (i) from the number obtained in step (ii).

(viii) Then divide both the sides of the equation by the coefficient of x.

(ix) Therefore, we get the required vulgar fraction in the lowest form.

Worked-out examples for the conversion of mixed recurring decimals into vulgar fractions:

1. Express 0.18 as vulgar fraction.

Solution:

x = 0.18

Multiply both sides by 10 (Since number of digits without bar is 1)

10x = 1.8

10x = 1.88…… ---------- (i)

10 × 10x = 1.88…… × 10 (Since number of digits having bars is 1)

100x = 18.8….. ------------- (ii)

Subtracting (i) from (ii)

100x - 10x = 18.8 - 1.8

90x = 17

x = 17/90

Therefore, the vulgar fraction = 17/90


2. Express 0.23 as vulgar fraction.

Solution:

x = 0.23

Multiply both sides by 10 (Since number of digits without bar is 1)

10x = 2.3

10x = 2.33…… ---------- (i)

10 × 10x = 2.33…… × 10 (Since number of digits having bars is 1)

100x = 23.3….. ------------- (ii)

Subtracting (i) from (ii)

100x - 10x = 23.3 - 2.3

90x = 21

x = 21/90

x = 7/30

Therefore, the vulgar fraction = 7/30



3. Express 0.43213 as vulgar fraction.

Solution:

x = 0.43213

Multiply both sides by 100 (Since number of digits without bar is 2)

100x = 43.213

100x = 43.213213…… ---------- (i)

100 × 1000x = 43.213…… × 1000 (Since number of digits having bars is 3)

100000x = 43213.213….. ------------- (ii)

Subtracting (i) from (ii)

100000x - 100x = 43213.213 - 43.213213

99900x = 43170

x = 43170/99900

x = 4317/9990

Therefore, the vulgar fraction = 4317/9990


Shortcut method for solving the problems on conversion of mixed recurring decimals into vulgar fractions:

The difference between the number formed by all the digits in decimal part and the number formed by digits that are not repeated, gives the numerator of the vulgar fraction and for its denominator the number formed by as many nines as there are recurring digits which are repeated followed by as many zeros as the number of non-repeating or non-recurring digits.

For example;

Express 0.123 as vulgar fraction.
Numerator = 123 - 12 = 111

Denominator = one nine (as there are one recurring digit) followed by two zeros (as there are two non-recurring digits) = 900

Required fraction = 111/900 (reduce to its simplest form)

Therefore, the vulgar fraction = 37/300

Related Concept

Decimals

Decimal Numbers

Decimal Fractions

Like and Unlike Decimals

Comparing Decimals

Decimal Places

Conversion of Unlike Decimals to Like Decimals

Decimal and Fractional Expansion

Terminating Decimal

Non-Terminating Decimal

Converting Decimals to Fractions

Converting Fractions to Decimals

H.C.F. and L.C.M. of Decimals

Repeating or Recurring Decimal

Pure Recurring Decimal

Mixed Recurring Decimal

BODMAS Rule

BODMAS/PEMDAS Rules - Involving Decimals

PEMDAS Rules - Involving Integers

PEMDAS Rules - Involving Decimals

PEMDAS Rule

BODMAS Rules - Involving Integers

Conversion of Pure Recurring Decimal into Vulgar Fraction

Conversion of Mixed Recurring Decimals into Vulgar Fractions

Simplification of Decimal

Rounding Decimals

Rounding Decimals to the Nearest Whole Number

Rounding Decimals to the Nearest Tenths

Rounding Decimals to the Nearest Hundredths

Round a Decimal

Adding Decimals

Subtracting Decimals

Simplify Decimals Involving Addition and Subtraction Decimals

Multiplying Decimal by a Decimal Number

Multiplying Decimal by a Whole Number

Dividing Decimal by a Whole Number

Dividing Decimal by a Decimal Number





7th Grade Math Problems

From Conversion of Mixed Recurring Decimals into Vulgar Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Missing Numbers up to 10 | Worksheets on Missing Numbers up to 10

    Apr 18, 25 04:53 PM

    missing numbers up to 10
    Printable worksheets on missing numbers up to 10 help the kids to practice counting of the numbers.

    Read More

  2. Ordering Decimals | Comparing Decimals | Ascending & Descending Order

    Apr 18, 25 01:49 PM

    Ordering Decimal Numbers
    In ordering decimals we will learn how to compare two or more decimals. (i) Convert each of them as like decimals. (ii) Compare these decimals just as we compare two whole numbers ignoring

    Read More

  3. Worksheet on Comparing and Ordering Decimals |Arranging Decimals

    Apr 18, 25 01:14 PM

    Arranging Decimals
    Practice different types of math questions given in the worksheet on comparing and ordering decimals. This worksheet contains questions mainly related to compare decimals and then place the decimals i…

    Read More

  4. Decimal Place Value Chart |Tenths Place |Hundredths Place |Thousandths

    Apr 18, 25 12:58 PM

    Decimal place value chart
    Decimal place value chart are discussed here: The first place after the decimal is got by dividing the number by 10; it is called the tenths place.

    Read More

  5. Conversion of a Decimal Fraction into a Fractional Number | Decimals

    Apr 18, 25 12:28 PM

    We will discuss here about the working rule for the conversion of a decimal fraction into a fractional number. The rules of converting decimal number to fraction are

    Read More