Converse of Pythagorean Theorem

Converse of Pythagorean Theorem states that:

In a triangle, if the square of one side is equal to the sum of the squares of the other two sides then the angle opposite to the first side is a right angle.

Given: A ∆PQR in which PR2 = PQ2 + QR2

To prove: ∠Q = 90°

Construction: Draw a ∆XYZ such that XY = PQ, YZ = QR and ∠Y = 90°
Converse of Pythagorean Theorem

So, by Pythagora’s theorem we get,



XZ2 = XY2 + YZ2

⇒ XZ2 = PQ2 + QR2 ……….. (i), [since XY = PQ and YZ = QR]

But, PR2 = PQ2 + QR2 ………… (ii), [given]

From (i) and (ii) we get,

PR2 = XZ2 ⇒ PR = XZ

Now, in ∆PQR and ∆XYZ, we get

PQ = XY,

QR = YZ and

PR = XZ

Therefore ∆PQR ≅ ∆XYZ

Hence ∠Q = ∠Y = 90°

 

Word problems using the Converse of Pythagorean Theorem:

1. The side of a triangle are of length 4.5 cm, 7.5 cm and 6 cm. Is this triangle a right triangle? If so, which side is the hypotenuse?

Solution:

We know that hypotenuse is the longest side. If 4.5 cm, 7.5 cm and 6 cm are the lengths of angled triangle, then 7.5 cm will be the hypotenuse.

 Using the converse of Pythagoras theorem, we get

(7.5)2 = (6)2 + (4.5)2

56.25 = 36 + 20.25

56.25 = 56.25

Since, both the sides are equal therefore, 4.5 cm, 7.5 cm and 6 cm are the side of the right angled triangle having hypotenuse 7.5 cm.


2. The side of a triangle are of length 8 cm, 15 cm and 17 cm. Is this triangle a right triangle? If so, which side is the hypotenuse?

Solution:

We know that hypotenuse is the longest side. If 8 cm, 15 cm and 17 cm are the lengths of angled triangle, then 17 cm will be the hypotenuse.

Using the converse of Pythagoras theorem, we get

(17)2 = (15)2 + (8)2

289 = 225 + 64

289 = 289

Since, both the sides are equal therefore, 8 cm, 15 cm and 17 cm are the side of the right angled triangle having hypotenuse 17 cm.


3. The side of a triangle are of length 9 cm, 11 cm and 6 cm. Is this triangle a right triangle? If so, which side is the hypotenuse?

Solution:

We know that hypotenuse is the longest side. If 9 cm, 11 cm and 6 cm are the lengths of angled triangle, then 11 cm will be the hypotenuse.

Using the converse of Pythagoras theorem, we get

(11)2 = (9)2 + (6)2

121 = 81 + 36

121 ≠ 117

Since, both the sides are not equal therefore 9 cm, 11 cm and 6 cm are not the side of the right angled triangle.


The above examples of the converse of Pythagorean Theorem will help us to determine the right triangle when the sides of the triangles will be given in the questions.

Congruent Shapes

Congruent Line-segments

Congruent Angles

Congruent Triangles

Conditions for the Congruence of Triangles

Side Side Side Congruence

Side Angle Side Congruence

Angle Side Angle Congruence

Angle Angle Side Congruence

Right Angle Hypotenuse Side congruence

Pythagorean Theorem

Proof of Pythagorean Theorem

Converse of Pythagorean Theorem





7th Grade Math Problems

8th Grade Math Practice

From Converse of Pythagorean Theorem to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:20 AM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  2. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More

  3. Word Problems on Subtraction |Worksheet on Subtraction Word Problems |

    Jan 14, 25 12:21 AM

    Subtraction Problem
    In word problems on subtraction we need to read the question carefully and understand what we need to find out. We know, in subtraction the larger number from which we subtract the other number (the s…

    Read More

  4. Worksheet on Estimating Sums and Differences | Find the Estimated Sum

    Jan 13, 25 01:34 PM

    Estimate the Difference
    In 4th grade worksheet on estimating sums and differences, all grade students can practice the questions on estimations.This exercise sheet on estimating sums and differences can be practiced

    Read More

  5. Worksheet on Mixed Addition and Subtraction | Questions on Addition

    Jan 12, 25 02:14 PM

    In worksheet on mixed addition and subtraction the questions involve both addition and subtraction together; all grade students can practice the questions on addition and subtraction together.

    Read More

Word problems on Pythagorean Theorem