Conditions of Collinearity of Three Points

We will discuss here how to prove the conditions of collinearity of three points.


Definition of Collinear Points:

Three or more points in a plane are said to be collinear if they all he on the same line.

Working Rules to Draw Collinear Points:

Step I: Draw a straight line ''.

Collinear Points

Step II: Mark points A, B, C, D, E on the straight line ''.

Thus, we have drawn the collinear points A, B, C, D and E on the line ''.


NOTE: If the points do not lie on the line, they are called non-collinear points.

Three points A, B and C are said to be collinear if they lie on the same straight line.

Collinear Points ABC

There points A, B and C will be collinear if AB + BC = AC as is clear from the above figure.

In general, three points A, B and C are collinear if the sum of the lengths of any two line segments among AB, BC and CA is equal to the length of the remaining line segment, that is,

either AB + BC = AC or AC + CB = AB or BA + AC = BC.

In other words,

There points A, B and C are collinear iff:

(i) AB + BC = AC i.e.,

Or, (ii) AB + AC = BC i.e. ,

Or, AC + BC = AB i.e.,


Solved examples to prove the collinearity of three points:

1. Prove that the points A (1, 1), B (-2, 7) and (3, -3) are collinear.

Solution:

Let A (1, 1), B (-2, 7) and C (3, -3) be the given points. Then,

AB = \(\sqrt{(-2 - 1)^{2} + (7 - 1)^{2}}\) = \(\sqrt{(-3)^{2} + 6^{2}}\) = \(\sqrt{9 + 36}\) = \(\sqrt{45}\) = 3\(\sqrt{5}\) units.

BC = \(\sqrt{(3 + 2)^{2} + (-3 - 7)^{2}}\) = \(\sqrt{5^{2} + (-10)^{2}}\) = \(\sqrt{25 + 100}\) = \(\sqrt{125}\) = 5\(\sqrt{5}\) units.

AC = \(\sqrt{(3 - 1)^{2} + (-3 - 1)^{2}}\) = \(\sqrt{2^{2} + (-4)^{2}}\) = \(\sqrt{4 + 16}\) = \(\sqrt{20}\) = 2\(\sqrt{5}\) units.

Therefore, AB + AC = 3\(\sqrt{5}\) + 2\(\sqrt{5}\) units = 5\(\sqrt{5}\) = BC

Thus, AB + AC = BC

Hence, the given points A, B, C are collinear.

 

2. Use the distance formula to show the points (1, -1), (6, 4) and (4, 2) are collinear.

Solution:

Let the points be A (1, -1), B (6, 4) and C (4, 2). Then,

AB = \(\sqrt{(6 - 1)^{2} + (4 + 1)^{2}}\) = \(\sqrt{5^{2} + 5^{2}}\) = \(\sqrt{25 + 25}\) = \(\sqrt{50}\) = 5\(\sqrt{2}\)

BC = \(\sqrt{(4 - 6)^{2} + (2 - 4)^{2}}\) = \(\sqrt{(-2)^{2} + (-2)^{2}}\) = \(\sqrt{4 + 4}\) = \(\sqrt{8}\) = 2\(\sqrt{2}\)

and

AC = \(\sqrt{(4 - 1)^{2} + (2 + 1)^{2}}\) = \(\sqrt{3^{2} + 3^{2}}\) = \(\sqrt{9 + 9}\) = \(\sqrt{18}\) = 3\(\sqrt{2}\)

⟹ BC + AC = 2\(\sqrt{2}\) + 3\(\sqrt{2}\) = 5\(\sqrt{2}\) = AB

So, the points A, B and C are collinear with C lying between A and B.

 

3. Use the distance formula to show the points (2, 3), (8, 11) and (-1, -1) are collinear.

Solution:

Let the points be A (2, 3), B (8, 11) and C (-1, -1). Then,

AB = \(\sqrt{(2 - 8)^{2} + (3 - 11)^{2}}\) = \(\sqrt{6^{2} + (-8)^{2}}\) = \(\sqrt{36 + 64}\) = \(\sqrt{100}\) = 10

BC = \(\sqrt{(8 - (-1))^{2} + (11 - (-1))^{2}}\) = \(\sqrt{9^{2} + 12^{2}}\) = \(\sqrt{81 + 144}\) = \(\sqrt{225}\) = 15

and

CA = \(\sqrt{((-1) - 2)^{2} + ((-1) + 3)^{2}}\) = \(\sqrt{(-3)^{2} + (-4)^{2}}\) = \(\sqrt{9 + 16}\) = \(\sqrt{25}\) = 5

⟹ AB + CA = 10 + 5 = 15 = BC

Hence, the given points A, B, C are collinear.

 Distance and Section Formulae




10th Grade Math

From Conditions of Collinearity of Three Points to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Mixed Addition and Subtraction | Questions on Addition

    Jan 12, 25 02:14 PM

    In worksheet on mixed addition and subtraction the questions involve both addition and subtraction together; all grade students can practice the questions on addition and subtraction together.

    Read More

  2. Estimating Sums and Differences | Estimations | Practical Calculations

    Jan 12, 25 02:02 PM

    Estimating Difference
    For estimating sums and differences in the number we use the rounded numbers for estimations to its nearest tens, hundred, and thousand. In many practical calculations, only an approximation is requir…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jan 12, 25 01:36 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Checking Subtraction using Addition |Use Addition to Check Subtraction

    Jan 12, 25 01:13 PM

    Checking Subtraction using Addition Worksheet
    We can check subtraction by adding the difference to the smaller number. Since the sum of difference and smaller number is equal to the larger number, subtraction is correct.

    Read More

  5. Worksheet on Subtraction of 4-Digit Numbers|Subtracting 4-Digit Number

    Jan 12, 25 09:04 AM

    Worksheet on Subtraction of 4-Digit Numbers
    Practice the questions given in the worksheet on subtraction of 4-digit numbers. Here we will subtract two 4-digit numbers (without borrowing and with borrowing) to find the difference between them.

    Read More