Processing math: 100%

Condition of Perpendicularity

We will discuss here about the condition of perpendicularity of two straight lines.

Let the lines AB and CD be perpendicular to each other. If the inclination of AB with the positive direction of the x-axis is θ then the inclination of CD with the positive direction of the x-axis will be 90° + θ.

Therefore, the slope of AB = tan θ, and

the slope of CD = tan (90° + θ).

From trigonometry, we have, tan (90° + θ) = - cot θ

Therefore, if the slope of AB is m1 and

the slope CD = m2 then 

m1 = tan θ and m2 = - cot θ.

So, m1 ∙ m2 = tan θ ∙ (- cot θ) = -1

Two lines with slopes m1 and m2 are perpendicular to each other if and only if m1 ∙ m2 = -1

Note: (i) By the definition, the x-axis is perpendicular to the y-axis.

(ii) By definition, any line parallel to the x-axis is perpendicular to any line parallel to the y-axis.

(iii) If the slope of a line is m then any line perpendicular to it will have the slope 1m (i.e., negative reciprocal of m).

 

Solved example on Condition of perpendicularity of two lines:

Find the equation of the line passing through the point (-2, 0) and perpendicular to the line 4x – 3y = 2.

Solution:

First we need to express the given equation in the form y = mx + c.

Given equation is 4x – 3y = 2.

-3y = -4x + 2

y = 43x - 23

Therefore, the slope (m) of the given line = 43

Let the slope of the required line be m1.

According to the problem the required line is perpendicular to the given line.

Therefore, from the condition of perpendicularity we get,

m143 = -1

⟹ m1 = -34

Thus, the required line has the slope -34 and it passes through the point (-2, 0).

Therefore, using the point-slope form we get

y - 0 = -34{x - (-2)}

⟹ y = -34(x + 2)

⟹ 4y = -3(x + 2)

⟹ 4y = -3x + 6

⟹ 3x + 4y + 6 = 0, which is the required equation.

 Equation of a Straight Line







10th Grade Math

From Condition of Perpendicularity of Two Straight Lines to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Place Value and Face Value | Place and Face Value of Larger Number

    Apr 13, 25 03:12 PM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More

  2. Face Value and Place Value|Difference Between Place Value & Face Value

    Apr 13, 25 03:07 PM

    Place Value and Face Value
    What is the difference between face value and place value of digits? Before we proceed to face value and place value let us recall the expanded form of a number. The face value of a digit is the digit…

    Read More

  3. Place Value and Face Value | Basic Concept on Place Value | Face Value

    Apr 13, 25 02:59 PM

    Face Value and Place Value of  a Number
    Learn the easiest way to understand the basic concept on place value and face value in the second grade. Suppose we write a number in figures 435 in words we write four hundred thirty five.

    Read More

  4. Expressing Place Value and Face Value | International & Indian System

    Apr 13, 25 02:35 PM

    We will learn expressing place value and face value of a digit in any number in International and Indian system. Place value: We know how to find out the place value of a digit in any number.

    Read More

  5. 5th Grade Decimals | Word Problem on Decimals | Concept of Decimals

    Apr 13, 25 02:16 PM

    Decimals
    A fractional number whose denominator is 10 or multiple of 10 is called a decimal. Every decimal has two parts whole number part and decimal part. These two parts are separated by a dot or point. This…

    Read More