Condition of Perpendicularity of Two Lines

We will learn how to find the condition of perpendicularity of two lines.

If two lines AB and CD of slopes m\(_{1}\) and m\(_{2}\) are perpendicular, then the angle between the lines θ is of 90°.

Therefore, cot θ = 0

⇒ \(\frac{1 + m_{1}m_{2}}{m_{2} - m_{1}}\) = 0

⇒ 1 + m\(_{1}\)m\(_{2}\) = 0

m\(_{1}\)m\(_{2}\) = -1.

Thus when two lines are perpendicular, the product of their slope is -1. If m is the slope of a line, then the slope of a line perpendicular to it is -1/m.

Let us assume that the lines y = m\(_{1}\)x + c\(_{1}\) and y = m\(_{2}\) x + c\(_{2}\) make angles α and β respectively with the positive direction of the x-axis and θ be the angle between them.

Therefore, α = θ + β = 90° + β [Since, θ = 90°]

Now taking tan on both sides we get,

tan α = tan (θ + β)

tan α = - cot  β

tan α = - \(\frac{1}{tan β}\)

or,  m\(_{1}\) =  - \(\frac{1}{m_{1}}\)    

or, m\(_{1}\)m\(_{2}\) = -1

Therefore, the condition of perpendicularity of the lines y = m\(_{1}\)x + c\(_{1}\), and y = m\(_{2}\) x + c\(_{2}\) is m\(_{1}\)m\(_{2}\) = -1.

Conversely, if m\(_{1}\)m\(_{2}\) = - 1 then

tan ∙ tan β = - 1      

\(\frac{sin α sin β}{cos α cos β}\) = -1

sin α sin β = - cos α cos β

cos α cos β + sin α sin β = 0

cos (α - β) = 0        

Therefore, α - β = 90°

Therefore, θ = α - β = 90°

Thus, the straight lines AB and CD are perpendicular to each other.

 

Solved examples to find the condition of perpendicularity of two given straight lines:

1. Let P (6, 4) and Q (2, 12) be the two points. Find the slope of a line perpendicular to PQ.

Solution:

Let m be the slope of PQ.

Then m = \(\frac{12 - 4}{2 - 6}\) = \(\frac{8}{-4}\) = -2

Therefore the slope of the line perpendicular to PQ = - \(\frac{1}{m}\) = ½


2. Without using the Pythagoras theorem, show that P (4, 4), Q (3, 5) and R (-1, -1) are the vertices of a right angled triangle.

Solution:

In ∆ ABC, we have:

m\(_{1}\) = Slope of the side PQ = \(\frac{4 - 5}{4 - 3}\) = -1

m\(_{2}\) = Slope of the side PR = \(\frac{4 - (-1)}{4 - (-1)}\) = 1

Now clearly we see that m\(_{1}\)m\(_{2}\) = 1 × -1 = -1

Therefore, the side PQ perpendicular to PR that is ∠RPQ = 90°.

Therefore, the given points P (4, 4), Q (3, 5) and R (-1, -1) are the vertices of a right angled triangle.


3. Find the ortho-centre of the triangle formed by joining the points P (- 2, -3), Q (6, 1) and R (1, 6).

Solution:       

The slope of the side QR of the ∆PQR is  \(\frac{6 - 1}{1 - 6}\) =  \(\frac{5}{-5}\) = -1∙

Let PS be the perpendicular from P on QR; hence, if the slope of the line PS be m then,

m × (- 1) = - 1        

or, m  = 1.

Therefore, the equation of the straight line PS is

y + 3 = 1 (x + 2)         

 or, x - y = 1     …………………(1)  

Again, the slope of the side RP of the ∆ PQR is \(\frac{6 + 3}{1 + 2}\) = 3∙

Let QT be the perpendicular from Q on RP; hence, if the slope of the line QT be m1 then,

m\(_{1}\) × 3  = -1  

or, m\(_{1}\) =  -\(\frac{1}{3}\)

Therefore, tile equation of the straight line QT is

y – 1 = -\(\frac{1}{3}\)(x - 6)                        

or,  3y – 3 = - x + 6 

Or,  x + 3y = 9 ………………(2)

Now, solving equations (1) and (2) we get, x = 3, y = 2.

Therefore, the co-ordinates of the point of intersection of the lines (1) and (2) are (3, 2).

Therefore, the co-ordinates of the ortho-centre of the ∆PQR = the co-ordinates of the point of intersection of the straight lines PS and QT = (3, 2).

 The Straight Line




11 and 12 Grade Math

From Condition of Perpendicularity of Two Lines to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 3rd Grade Math Worksheets |3rd Grade Math Sheets|3rd Grade Math Lesson

    Jan 14, 25 02:50 PM

    3rd Grade Math Worksheets
    3rd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  2. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:57 PM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  3. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More

  4. Word Problems on Subtraction |Worksheet on Subtraction Word Problems |

    Jan 14, 25 12:21 AM

    Subtraction Problem
    In word problems on subtraction we need to read the question carefully and understand what we need to find out. We know, in subtraction the larger number from which we subtract the other number (the s…

    Read More

  5. Worksheet on Estimating Sums and Differences | Find the Estimated Sum

    Jan 13, 25 01:34 PM

    Estimate the Difference
    In 4th grade worksheet on estimating sums and differences, all grade students can practice the questions on estimations.This exercise sheet on estimating sums and differences can be practiced

    Read More