Concurrency of Three Lines

We will learn how to find the condition of concurrency of three straight lines.


Definition of Concurrent Lines:

Three or more lines in a plane are said to be concurrent if all of them
pass through the same point.

Concurrent Lines

In the above Fig., since the three lines, m and n pass through the point O, these are called concurrent lines.

Also, the point O is called the point of concurrence.

Three straight lines are said to be concurrent if they passes through a point i.e., they meet at a point. 

Thus, if three lines are concurrent the point of intersection of two lines lies on the third line.

Let the equations of the three concurrent straight lines be

a\(_{1}\) x + b\(_{1}\)y + c\(_{1}\)  = 0   ……………. (i)

a\(_{2}\) x + b\(_{2}\) y + c\(_{2}\) = 0  ……………. (ii) and

a\(_{3}\) x + b\(_{3}\) y + c\(_{3}\) = 0 ……………. (iii)

Clearly, the point of intersection of the lines (i) and (ii) must be satisfies the third equation.

Suppose the equations (i) and (ii) of two intersecting lines intersect at P(x\(_{1}\), y\(_{1}\)). Then (x\(_{1}\), y\(_{1}\)) will satisfy both the equations (i) and (ii).

Therefore, a\(_{1}\)x\(_{1}\) + b\(_{1}\)y\(_{1}\)  + c\(_{1}\) = 0 and

a\(_{2}\)x\(_{1}\) + b\(_{2}\)y\(_{1}\) + c\(_{2}\) = 0               

Solving the above two equations by using the method of cross-multiplication, we get,

\(\frac{x_{1}}{b_{1}c_{2} - b_{2}c_{1}} = \frac{y_{1}}{c_{1}a_{2} - c_{2}a_{1}} = \frac{1}{a_{1}b_{2} - a_{2}b_{1}}\)

Therefore, x\(_{1}\)  = \(\frac{b_{1}c_{2} - b_{2}c_{1}}{a_{1}b_{2} - a_{2}b_{1}}\) and

y\(_{1}\)  = \(\frac{c_{1}a_{2} - c_{2}a_{1}}{a_{1}b_{2} - a_{2}b_{1}}\),  a\(_{1}\)b\(_{2}\) - a\(_{2}\)b\(_{1}\) ≠ 0

Therefore, the required co-ordinates of the point of intersection of the lines (i) and (ii) are

(\(\frac{b_{1}c_{2} - b_{2}c_{1}}{a_{1}b_{2} - a_{2}b_{1}}\), \(\frac{c_{1}a_{2} - c_{2}a_{1}}{a_{1}b_{2} - a_{2}b_{1}}\)), a\(_{1}\)b\(_{2}\) - a\(_{2}\)b\(_{1}\) ≠ 0

Since the straight lines (i), (ii) and (ii) are concurrent, hence (x\(_{1}\), y\(_{1}\)) must satisfy the equation (iii).

Therefore,

a\(_{3}\)x\(_{1}\) + b\(_{3}\)y\(_{1}\) + c\(_{3}\) = 0

⇒ a\(_{3}\)(\(\frac{b_{1}c_{2} - b_{2}c_{1}}{a_{1}b_{2} - a_{2}b_{1}}\)) + b\(_{3}\)(\(\frac{c_{1}a_{2} - c_{2}a_{1}}{a_{1}b_{2} - a_{2}b_{1}}\)) + c\(_{3}\) = 0

 a\(_{3}\)(b\(_{1}\)c\(_{2}\) - b\(_{2}\)c\(_{1}\)) + b\(_{3}\)(c\(_{1}\)a\(_{2}\) - c\(_{2}\)a\(_{1}\)) + c\(_{3}\)(a\(_{1}\)b\(_{2}\) - a\(_{2}\)b\(_{1}\)) = 0

 \[\begin{vmatrix} a_{1} & b_{1} & c_{1}\\ a_{2} & b_{2} & c_{2}\\ a_{3} & b_{3} & c_{3} \end{vmatrix} = 0\]

This is the required condition of concurrence of three straight lines.


Solved example using the condition of concurrency of three given straight lines:

Show that the lines 2x - 3y + 5 = 0, 3x + 4y - 7 = 0 and 9x - 5y + 8 =0 are concurrent.

Solution:

We know that if the equations of three straight lines  a\(_{1}\) x + b\(_{1}\)y + c\(_{1}\)  = 0, a\(_{2}\) x + b\(_{2}\) y + c\(_{2}\) = 0 and a\(_{3}\) x + b\(_{3}\) y + c\(_{3}\) = 0 are concurrent then

\[\begin{vmatrix} a_{1} & b_{1} & c_{1}\\ a_{2} & b_{2} & c_{2}\\ a_{3} & b_{3} & c_{3} \end{vmatrix} = 0\]

The given lines are 2x - 3y + 5 = 0, 3x + 4y - 7 = 0 and 9x - 5y + 8 =0

We have

\[\begin{vmatrix} 2  & -3 & 5\\ 3 & 4 & -7\\ 9  & -5 & 8\end{vmatrix}\]

= 2(32 - 35) - (-3)(24 + 63) + 5(-15 - 36)

= 2(-3) + 3(87) + 5(-51)

= - 6 + 261 -255

= 0

Therefore, the given three straight lines are concurrent.

 The Straight Line





11 and 12 Grade Math 

From Concurrency of Three Lines to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Subtraction of 4-Digit Numbers | Subtract Numbers with Four Digit

    Jan 11, 25 03:35 PM

    We will learn about the subtraction of 4-digit numbers (without borrowing and with borrowing). We know when one number is subtracted from another number the result obtained is called the difference.

    Read More

  2. 3rd Grade Addition Worksheet | 3-Digit Addition | Word Problems | Ans

    Jan 11, 25 01:06 PM

    3rd Grade Addition Games
    In 3th Grade Addition Worksheet we will solve how to addition of 3-digit numbers without regrouping, addition of three 3-digit numbers without regrouping, addition of 3-digit numbers with regrouping…

    Read More

  3. Addition of 4-Digit Numbers | 4-Digit Addition |Adding 4-Digit Numbers

    Jan 11, 25 03:16 AM

    Addition of 4-Digit Numbers
    We will learn about the addition of 4-digit numbers (without carrying and with carrying). We know how to add 2 or 3, 3-digit numbers without carrying or with carrying.

    Read More

  4. Worksheet on Addition of 4-Digit Numbers | 4 Digit Addition Worksheets

    Jan 11, 25 02:48 AM

    Worksheet on Addition of 4-Digit Numbers
    Practice the questions given in the worksheet on addition of 4-digit numbers. Here we will add two 4-digit numbers (without carrying and with carrying) and three 4-digit numbers

    Read More

  5. Word Problems on 4-Digit Numbers |Addition and Subtraction of 4-Digits

    Jan 10, 25 02:49 PM

    Word Problems on 4-Digit Numbers
    We will solve here some of the word problems on addition and subtraction of 4-digit numbers. We will apply the same method while adding and subtracting the word problems. 1. In a village, there are 25…

    Read More