Concurrency of Three Lines

We will learn how to find the condition of concurrency of three straight lines.


Definition of Concurrent Lines:

Three or more lines in a plane are said to be concurrent if all of them
pass through the same point.

Concurrent Lines

In the above Fig., since the three lines, m and n pass through the point O, these are called concurrent lines.

Also, the point O is called the point of concurrence.

Three straight lines are said to be concurrent if they passes through a point i.e., they meet at a point. 

Thus, if three lines are concurrent the point of intersection of two lines lies on the third line.

Let the equations of the three concurrent straight lines be

a\(_{1}\) x + b\(_{1}\)y + c\(_{1}\)  = 0   ……………. (i)

a\(_{2}\) x + b\(_{2}\) y + c\(_{2}\) = 0  ……………. (ii) and

a\(_{3}\) x + b\(_{3}\) y + c\(_{3}\) = 0 ……………. (iii)

Clearly, the point of intersection of the lines (i) and (ii) must be satisfies the third equation.

Suppose the equations (i) and (ii) of two intersecting lines intersect at P(x\(_{1}\), y\(_{1}\)). Then (x\(_{1}\), y\(_{1}\)) will satisfy both the equations (i) and (ii).

Therefore, a\(_{1}\)x\(_{1}\) + b\(_{1}\)y\(_{1}\)  + c\(_{1}\) = 0 and

a\(_{2}\)x\(_{1}\) + b\(_{2}\)y\(_{1}\) + c\(_{2}\) = 0               

Solving the above two equations by using the method of cross-multiplication, we get,

\(\frac{x_{1}}{b_{1}c_{2} - b_{2}c_{1}} = \frac{y_{1}}{c_{1}a_{2} - c_{2}a_{1}} = \frac{1}{a_{1}b_{2} - a_{2}b_{1}}\)

Therefore, x\(_{1}\)  = \(\frac{b_{1}c_{2} - b_{2}c_{1}}{a_{1}b_{2} - a_{2}b_{1}}\) and

y\(_{1}\)  = \(\frac{c_{1}a_{2} - c_{2}a_{1}}{a_{1}b_{2} - a_{2}b_{1}}\),  a\(_{1}\)b\(_{2}\) - a\(_{2}\)b\(_{1}\) ≠ 0

Therefore, the required co-ordinates of the point of intersection of the lines (i) and (ii) are

(\(\frac{b_{1}c_{2} - b_{2}c_{1}}{a_{1}b_{2} - a_{2}b_{1}}\), \(\frac{c_{1}a_{2} - c_{2}a_{1}}{a_{1}b_{2} - a_{2}b_{1}}\)), a\(_{1}\)b\(_{2}\) - a\(_{2}\)b\(_{1}\) ≠ 0

Since the straight lines (i), (ii) and (ii) are concurrent, hence (x\(_{1}\), y\(_{1}\)) must satisfy the equation (iii).

Therefore,

a\(_{3}\)x\(_{1}\) + b\(_{3}\)y\(_{1}\) + c\(_{3}\) = 0

⇒ a\(_{3}\)(\(\frac{b_{1}c_{2} - b_{2}c_{1}}{a_{1}b_{2} - a_{2}b_{1}}\)) + b\(_{3}\)(\(\frac{c_{1}a_{2} - c_{2}a_{1}}{a_{1}b_{2} - a_{2}b_{1}}\)) + c\(_{3}\) = 0

 a\(_{3}\)(b\(_{1}\)c\(_{2}\) - b\(_{2}\)c\(_{1}\)) + b\(_{3}\)(c\(_{1}\)a\(_{2}\) - c\(_{2}\)a\(_{1}\)) + c\(_{3}\)(a\(_{1}\)b\(_{2}\) - a\(_{2}\)b\(_{1}\)) = 0

 \[\begin{vmatrix} a_{1} & b_{1} & c_{1}\\ a_{2} & b_{2} & c_{2}\\ a_{3} & b_{3} & c_{3} \end{vmatrix} = 0\]

This is the required condition of concurrence of three straight lines.


Solved example using the condition of concurrency of three given straight lines:

Show that the lines 2x - 3y + 5 = 0, 3x + 4y - 7 = 0 and 9x - 5y + 8 =0 are concurrent.

Solution:

We know that if the equations of three straight lines  a\(_{1}\) x + b\(_{1}\)y + c\(_{1}\)  = 0, a\(_{2}\) x + b\(_{2}\) y + c\(_{2}\) = 0 and a\(_{3}\) x + b\(_{3}\) y + c\(_{3}\) = 0 are concurrent then

\[\begin{vmatrix} a_{1} & b_{1} & c_{1}\\ a_{2} & b_{2} & c_{2}\\ a_{3} & b_{3} & c_{3} \end{vmatrix} = 0\]

The given lines are 2x - 3y + 5 = 0, 3x + 4y - 7 = 0 and 9x - 5y + 8 =0

We have

\[\begin{vmatrix} 2  & -3 & 5\\ 3 & 4 & -7\\ 9  & -5 & 8\end{vmatrix}\]

= 2(32 - 35) - (-3)(24 + 63) + 5(-15 - 36)

= 2(-3) + 3(87) + 5(-51)

= - 6 + 261 -255

= 0

Therefore, the given three straight lines are concurrent.

 The Straight Line





11 and 12 Grade Math 

From Concurrency of Three Lines to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Nov 20, 24 01:00 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  2. 2nd Grade Measurement Worksheet | Measuring Length, Mass and Volume

    Nov 20, 24 12:50 AM

    In 2nd Grade Measurement Worksheet you will get different types of questions on measurement of length, measurement of weight (mass), measurement of capacity (volume), addition of length, addition of w…

    Read More

  3. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 20, 24 12:16 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  4. 2nd Grade Math Practice | Second Grade Math |2nd Grade Math Worksheets

    Nov 18, 24 02:23 PM

    In 2nd grade math practice you will get all types of examples on different topics along with the solutions. Second grade math games are arranged in such a way that students can learn math

    Read More

  5. Worksheet on Addition of Length | Word Problems on Addition of Length

    Nov 17, 24 10:29 PM

    Practice the third grade math worksheet on addition of length. This sheet provides different types of questions where you need to arrange the values of length under different columns to find their sum

    Read More