Compound Interest with Growing Principal

We will learn how to calculate the compound interest with growing principal.

If the interest which has become due at the end of a certain period (i.e., 1 year, half-year, ect. as given ) is not paid to the money lender, but is added to the some borrowed, the amount thus obtained becomes the principal for the next period of borrowing. This process goes on until the amount for the specified time is found.


Solved examples on compound interest with growing principal:

1. A man takes a loan of $ 10,000 at a compound interest rate of 10% per annum.

(i)  Find the amount after 1 year.

(ii) Find the compound interest for 2 years.

(iii) Find the sum of money required to clear the debt at the end of 2 years.

(iv) Find the difference between the compound interest and simple interest at the same rate for 2 years.

Solution:

(i) The interest for the first year = 10% of $10,000

                                            = $\(\frac{10}{100}\) × 10,000

                                            = $ 1,000

Therefore, the amount after 1 year = Principal + Interest

                                                = $10,000 + $ 1,000

                                                = $ 11,000

(ii) For the second year, the new principal is $ 11,000

Therefore, the interest for the 2nd year = 10% of $ 11,000

                                                      = $\(\frac{10}{100}\) × 11,000

                                                       = $ 1,100

Therefore, the compound interest for 2 years = the interest for the 1st year + the interest for the 2nd year

                                                             = $ 1,000 + $ 1,100

                                                             = $ 2,100

(iii) The required sum of money = Principal + compound Interest for 2 years

                                          = $ 10,000 + $ 2,100

                                          = $ 12,100

(iv) The simple interest for 2 years = \(\frac{P × R × T}{100}\)

                                               = $ \(\frac{10,000 × 10 × 2}{100}\)

                                               = $ 2,000

Therefore, the required difference = $ 2,100 - $ 2,000 = $ 100

 

2. At 4% per annum, the difference between simple and compound interest for 2 years on a certain sum of money is Rs. 80. Find the sum

Solution:

Let the sum of money be $ x,

The interest for the first year = 4 % of $x

                                        = $ \(\frac{4}{100}\) × x

                                        = $ \(\frac{4x}{100}\)

                                        = $ \(\frac{x}{25}\)

 

Therefore, the amount after 1 year = Principal + Interest

                                                = $ x + $ \(\frac{x}{25}\)

                                                = $ \(\frac{26x}{25}\)

For the second year, the new principal is $ \(\frac{26x}{25}\)

Therefore, the interest for the 2nd year = 4 % of $ \(\frac{26x}{25}\)

                                                      = $ \(\frac{4}{100}\) × \(\frac{26x}{25}\)

                                                      = $ \(\frac{26x}{625}\)

Compound interest for 2 years = $ \(\frac{x}{25}\) + $ \(\frac{26x}{625}\)

                                             = $ \(\frac{51x}{625}\)

At 4% rate simple interest for 2 years = $\(\frac{\frac{26x}{25} × 4 × T}{100}\)

                                                   = $\(\frac{x × 4 × 2}{100}\)

                                                   = $\(\frac{8x}{100}\)

                                                   = $\(\frac{2x}{25}\)

 

Now, according to the problem, we get

\(\frac{51x}{625}\) - \(\frac{2x}{25}\) = 80

x(\(\frac{51}{625}\) - \(\frac{2}{25}\)) = 80

\(\frac{x}{625}\) = 80

x = 80 × 625

x = 50000

The required sum of money is $ 50000


3. Find the amount and the compound interest on $10,000 at 8% per annum and in 1 year, interest will being compounded half-yearly.

Solution:

For first half-year principal = $ 10,000

Rate = 8%

Time = ½ year

The interest for the first half-year = \(\frac{P × R × T}{100}\)

                                               = \(\frac{10000 × 8 × 1}{100 × 2}\)

                                               = $ 400

Therefore, the amount after half- year = Principal + Interest

                                                     = $ 10,000 + $ 400

                                                     = $ 10,400

Therefore, at 8% rate the interest for the 2nd half-year = $\(\frac{10400 × 8 × 1}{100 × 2}\)

                                                                            = $ 416

The required sum of money = Principal + compound Interest

                                     = $10,400 + $ 416

                                     = $ 10,816

Therefore, the required amount = $ 10,816 and

the compound interest = Amount - Principal

                               = $ 10,816 - $ 10,000

                               = $ 816


From the above examples we conclude that:

(i) When the interest is compounded yearly, then the principal does not remain same every year.

(ii) When the interest is compounded half-yearly, then the principal does not remain same every 6 months.

Thus the principal changes at the end of every phases.

 Compound Interest

Compound Interest

Compound Interest by Using Formula

Problems on Compound Interest

Practice Test on Compound Interest


 Compound Interest - Worksheet

Worksheet on Compound Interest




8th Grade Math Practice 

From Compound Interest with Growing Principal to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 3rd Grade Math Worksheets |3rd Grade Math Sheets|3rd Grade Math Lesson

    Jan 14, 25 02:50 PM

    3rd Grade Math Worksheets
    3rd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  2. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:57 PM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  3. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More

  4. Word Problems on Subtraction |Worksheet on Subtraction Word Problems |

    Jan 14, 25 12:21 AM

    Subtraction Problem
    In word problems on subtraction we need to read the question carefully and understand what we need to find out. We know, in subtraction the larger number from which we subtract the other number (the s…

    Read More

  5. Worksheet on Estimating Sums and Differences | Find the Estimated Sum

    Jan 13, 25 01:34 PM

    Estimate the Difference
    In 4th grade worksheet on estimating sums and differences, all grade students can practice the questions on estimations.This exercise sheet on estimating sums and differences can be practiced

    Read More