Compound Interest when Interest is Compounded Quarterly

We will learn how to use the formula for calculating the compound interest when interest is compounded quarterly.

Computation of compound interest by using growing principal becomes lengthy and complicated when the period is long. If the rate of interest is annual and the interest is compounded quarterly (i.e., 3 months or, 4 times in a year) then the number of years (n) is 4 times (i.e., made 4n) and the rate of annual interest (r) is one-fourth (i.e., made \(\frac{r}{4}\)).  In such cases we use the following formula for compound interest when the interest is calculated quarterly.

If the principal = P, rate of interest per unit time = \(\frac{r}{4}\)%, number of units of time = 4n, the amount = A and the compound interest = CI

Then

A = P(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\)

Here, the rate percent is divided by 4 and the number of years is multiplied by 4.

Therefore, CI = A - P = P{(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\) - 1}

Note:

A = P(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\) is the relation among the four quantities P, r, n and A.

Given any three of these, the fourth can be found from this formula.

CI = A - P = P{(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\) - 1} is the relation among the four quantities P, r, n and CI.

Given any three of these, the fourth can be found from this formula.


Word problems on compound interest when interest is compounded quarterly:

1. Find the compound interest when $1,25,000 is invested for 9 months at 8% per annum, compounded quarterly.

Solution:

Here, P = principal amount (the initial amount) = $ 1,25,000

Rate of interest (r) = 8 % per annum

Number of years the amount is deposited or borrowed for (n) = \(\frac{9}{12}\) year = \(\frac{3}{4}\) year.

Therefore,

The amount of money accumulated after n years (A) = P(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\)

                                                                       = $ 1,25,000 (1 + \(\frac{\frac{8}{4}}{100}\))\(^{4 ∙ \frac{3}{4}}\)

                                                                       = $ 1,25,000 (1 + \(\frac{2}{100}\))\(^{3}\)

                                                                       = $ 1,25,000 (1 + \(\frac{1}{50}\))\(^{3}\)

                                                                       = $ 1,25,000 × (\(\frac{51}{50}\))\(^{3}\)

                                                                       = $ 1,25,000 × \(\frac{51}{50}\) × \(\frac{51}{50}\) × \(\frac{51}{50}\)

                                                                       = $ 1,32,651

Therefore, compound interest $ (1,32,651 - 1,25,000) = $ 7,651.

 

2. Find the compound interest on $10,000 if Ron took loan from a bank for 1 year at 8 % per annum, compounded quarterly.

Solution:

Here, P = principal amount (the initial amount) = $ 10,000

Rate of interest (r) = 8 % per annum

Number of years the amount is deposited or borrowed for (n) = 1 year

Using the compound interest when interest is compounded quarterly formula, we have that

A = P(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\)

   = $ 10,000 (1 + \(\frac{\frac{8}{4}}{100}\))\(^{4 ∙ 1}\)

   = $ 10,000 (1 + \(\frac{2}{100}\))\(^{4}\)

   = $ 10,000 (1 + \(\frac{1}{50}\))\(^{4}\)

   = $ 10,000 × (\(\frac{51}{50}\))\(^{4}\)

   = $ 10,000 × \(\frac{51}{50}\) × \(\frac{51}{50}\) × \(\frac{51}{50}\) × \(\frac{51}{50}\)

   = $ 10824.3216

   = $ 10824.32 (Approx.)

Therefore, compound interest $ (10824.32 - $ 10,000) = $ 824.32


3. Find the amount and the compound interest on $ 1,00,000 compounded quarterly for 9 months at the rate of 4% per annum.

Solution:

Here, P = principal amount (the initial amount) = $ 1,00,000

Rate of interest (r) = 4 % per annum

Number of years the amount is deposited or borrowed for (n) = \(\frac{9}{12}\) year = \(\frac{3}{4}\) year.

Therefore,

The amount of money accumulated after n years (A) = P(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\)

                                                                       = $ 1,00,000 (1 + \(\frac{\frac{4}{4}}{100}\))\(^{4 ∙ \frac{3}{4}}\)

                                                                       = $ 1,00,000 (1 + \(\frac{1}{100}\))\(^{3}\)

                                                                       = $ 1,00,000 × (\(\frac{101}{100}\))\(^{3}\)

                                                                       = $ 1,00,000 × \(\frac{101}{100}\) × \(\frac{101}{100}\) × \(\frac{101}{100}\)

                                                                       = $ 103030.10

Therefore, the required amount = $ 103030.10 and compound interest $ ($ 103030.10 - $ 1,00,000) = $ 3030.10

 

4. If $1,500.00 is invested at a compound interest rate 4.3% per annum compounded quarterly for 72 months, find the compound interest.

Solution:

Here, P = principal amount (the initial amount) = $1,500.00

Rate of interest (r) = 4.3 % per annum

Number of years the amount is deposited or borrowed for (n) = \(\frac{72}{12}\) years = 6 years.

A = amount of money accumulated after n years

Using the compound interest when interest is compounded quarterly formula, we have that

A = P(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\)

   = $1,500.00 (1 + \(\frac{\frac{4.3}{4}}{100}\))\(^{4 ∙ 6}\)

   = $1,500.00 (1 + \(\frac{1.075}{100}\))\(^{24}\)

   = $1,500.00 × (1 + 0.01075)\(^{24}\)

   = $1,500.00 × (1.01075)\(^{24}\)

   = $ 1938.83682213

   = $ 1938.84 (Approx.)

Therefore, the compound interest after 6 years is approximately $ (1,938.84 - 1,500.00) = $ 438.84.

Compound Interest

Compound Interest

Compound Interest with Growing Principal

Compound Interest with Periodic Deductions

Compound Interest by Using Formula

Compound Interest when Interest is Compounded Yearly

Compound Interest when Interest is Compounded Half-Yearly

Problems on Compound Interest

Variable Rate of Compound Interest

Practice Test on Compound Interest


Compound Interest - Worksheet

Worksheet on Compound Interest

Worksheet on Compound Interest with Growing Principal

Worksheet on Compound Interest with Periodic Deductions




8th Grade Math Practice 

From Compound Interest when Interest is Compounded Quarterly to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 3rd Grade Math Worksheets |3rd Grade Math Sheets|3rd Grade Math Lesson

    Jan 14, 25 02:50 PM

    3rd Grade Math Worksheets
    3rd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  2. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:57 PM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  3. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More

  4. Word Problems on Subtraction |Worksheet on Subtraction Word Problems |

    Jan 14, 25 12:21 AM

    Subtraction Problem
    In word problems on subtraction we need to read the question carefully and understand what we need to find out. We know, in subtraction the larger number from which we subtract the other number (the s…

    Read More

  5. Worksheet on Estimating Sums and Differences | Find the Estimated Sum

    Jan 13, 25 01:34 PM

    Estimate the Difference
    In 4th grade worksheet on estimating sums and differences, all grade students can practice the questions on estimations.This exercise sheet on estimating sums and differences can be practiced

    Read More