Comparison between Two Irrational Numbers

As we know that the numbers which can’t be written in \(\frac{p}{q}\) form or fraction form are known as irrational numbers. These are non- recurring decimal numbers. The square roots, cute roots of numbers which are not perfect roots are examples of irrational numbers. In such cases in which perfect square roots or cube roots can’t be found out, it is difficult to compare them without knowing their approximate or actual value.

For comparing them, we should always keep in mind that if square or cube roots of two numbers (‘a’ and ‘b’) are to be compared, such that ‘a’ is greater than ‘b’, then a\(^{2}\) will be greater than b\(^{2}\) and a\(^{3}\) will be greater than b\(^{3}\) and so on, i.e., nth power of ‘a’ will be greater than nth power of ‘b’. 


1. Compare \(\sqrt{2}\) and \(\sqrt{3}\)

Solution:

We know that if ‘a’ and ‘b’ are two numbers such that ‘a’ is greater than ‘b’, then a\(^{2}\) will be greater than b\(^{2}\). Hence, for \(\sqrt{2}\) and \(\sqrt{3}\), let us square both the numbers and then compare them:

\((\sqrt{2})^{2}\) = \(\sqrt{2}\) × \(\sqrt{2}\) = 2,

\((\sqrt{3})^{2}\) = \(\sqrt{3}\) × \(\sqrt{3}\) = 3

Since, 2 is less than 3. 

Hence, \(\sqrt{2}\) will be less than \(\sqrt{3}\).


2. Compare \(\sqrt{17}\) and \(\sqrt{15}\).

Solution:

Let us find out the square of both the numbers and then compare them. So,

\((\sqrt{17})^{2}\) = \(\sqrt{17}\) × \(\sqrt{17}\) = 17,

\((\sqrt{15})^{2}\) = \(\sqrt{15}\) × \(\sqrt{15}\) = 15

Since, 17 is greater than 15. 

So, \(\sqrt{17}\) will be greater than \(\sqrt{15}\).


3. Compare 2\(\sqrt{3}\) and \(\sqrt{5}\).

Solution:

To compare the given numbers let us first find the square of both the numbers and then carry out the comparison process. So,

\(2(\sqrt{3})^{2}\) = 2\(\sqrt{3}\) x 2\(\sqrt{3}\) = 2 × 2 × \(\sqrt{3}\) × \(\sqrt{3}\) = 4 × 3 = 12,

\((\sqrt{5})^{2}\) = \(\sqrt{5}\) × \(\sqrt{5}\) = 5

Since, 12 is greater than 5. 

So, 2\(\sqrt{3}\) is greater than \(\sqrt{5}\).


4. Arrange the following in ascending order:

\(\sqrt{5}\), \(\sqrt{3}\), \(\sqrt{11}\), \(\sqrt{21}\), \(\sqrt{13}\).

Solution:

Arranging in ascending order stands for arrangement of series from smaller value to the larger value. To arrange the given series in ascending order let us find the square of every element of the series. So,

 \((\sqrt{5})^{2}\) = \(\sqrt{5}\) × \(\sqrt{5}\) = 5.

\((\sqrt{3})^{2}\) = \(\sqrt{3}\) × \(\sqrt{3}\) = 3.

\((\sqrt{11})^{2}\) = \(\sqrt{11}\) × \(\sqrt{11}\) = 11.

\((\sqrt{21})^{2}\) = \(\sqrt{21}\) × \(\sqrt{21}\) = 21.

\((\sqrt{13})^{2}\) = \(\sqrt{13}\) × \(\sqrt{13}\) = 13.

Since, 3 < 5 < 11 < 13 < 21. Hence, the required order of the series is:

\(\sqrt{3}\) < \(\sqrt{5}\) < \(\sqrt{11}\) < \(\sqrt{13}\) < \(\sqrt{21}\).


5. Arrange the following in descending order:

\(\sqrt[3]{5}\), \(\sqrt[3]{7}\), \(\sqrt[3]{15}\), \(\sqrt[3]{2}\), \(\sqrt[3]{39}\).

Solution:

Descending order stands for arrangement of given series in larger value to the smaller value. To find the required series, let us find the cube of each element of the series. So,

\((\sqrt[3]{5})^{3}\) = \(\sqrt[3]{5}\) × \(\sqrt[3]{5}\) × \(\sqrt[3]{5}\) = 5.

\((\sqrt[3]{7})^{3}\) = \(\sqrt[3]{7}\) × \(\sqrt[3]{7}\) × \(\sqrt[3]{7}\) = 7.

\((\sqrt[3]{15})^{3}\) = \(\sqrt[3]{15}\) × \(\sqrt[3]{15}\) × \(\sqrt[3]{15}\) = 15.

\((\sqrt[3]{2})^{3}\) = \(\sqrt[3]{2}\) × \(\sqrt[3]{2}\) x \(\sqrt[3]{2}\) = 2.

\((\sqrt[3]{39})^{3}\) = \(\sqrt[3]{39}\) × \(\sqrt[3]{39}\) × \(\sqrt[3]{39}\) = 39.

Since, 39 > 15 > 7 > 5 > 2. 

So, the required order of the series is:

\(\sqrt[3]{39}\) > \(\sqrt[3]{15}\) > \(\sqrt[3]{7}\) > \(\sqrt[3]{5}\) > \(\sqrt[3]{2}\)


Irrational Numbers

Definition of Irrational Numbers

Representation of Irrational Numbers on The Number Line

Comparison between Two Irrational Numbers

Comparison between Rational and Irrational Numbers

Rationalization

Problems on Irrational Numbers

Problems on Rationalizing the Denominator

Worksheet on Irrational Numbers




9th Grade Math

From Comparison between Two Irrational Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 22, 24 01:00 AM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More

  3. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Nov 22, 24 12:12 AM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  4. 2nd Grade Measurement Worksheet | Measuring Length, Mass and Volume

    Nov 20, 24 12:50 AM

    In 2nd Grade Measurement Worksheet you will get different types of questions on measurement of length, measurement of weight (mass), measurement of capacity (volume), addition of length, addition of w…

    Read More

  5. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 20, 24 12:16 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More