Comparison between Two Irrational Numbers

As we know that the numbers which can’t be written in \(\frac{p}{q}\) form or fraction form are known as irrational numbers. These are non- recurring decimal numbers. The square roots, cute roots of numbers which are not perfect roots are examples of irrational numbers. In such cases in which perfect square roots or cube roots can’t be found out, it is difficult to compare them without knowing their approximate or actual value.

For comparing them, we should always keep in mind that if square or cube roots of two numbers (‘a’ and ‘b’) are to be compared, such that ‘a’ is greater than ‘b’, then a\(^{2}\) will be greater than b\(^{2}\) and a\(^{3}\) will be greater than b\(^{3}\) and so on, i.e., nth power of ‘a’ will be greater than nth power of ‘b’. 


1. Compare \(\sqrt{2}\) and \(\sqrt{3}\)

Solution:

We know that if ‘a’ and ‘b’ are two numbers such that ‘a’ is greater than ‘b’, then a\(^{2}\) will be greater than b\(^{2}\). Hence, for \(\sqrt{2}\) and \(\sqrt{3}\), let us square both the numbers and then compare them:

\((\sqrt{2})^{2}\) = \(\sqrt{2}\) × \(\sqrt{2}\) = 2,

\((\sqrt{3})^{2}\) = \(\sqrt{3}\) × \(\sqrt{3}\) = 3

Since, 2 is less than 3. 

Hence, \(\sqrt{2}\) will be less than \(\sqrt{3}\).


2. Compare \(\sqrt{17}\) and \(\sqrt{15}\).

Solution:

Let us find out the square of both the numbers and then compare them. So,

\((\sqrt{17})^{2}\) = \(\sqrt{17}\) × \(\sqrt{17}\) = 17,

\((\sqrt{15})^{2}\) = \(\sqrt{15}\) × \(\sqrt{15}\) = 15

Since, 17 is greater than 15. 

So, \(\sqrt{17}\) will be greater than \(\sqrt{15}\).


3. Compare 2\(\sqrt{3}\) and \(\sqrt{5}\).

Solution:

To compare the given numbers let us first find the square of both the numbers and then carry out the comparison process. So,

\(2(\sqrt{3})^{2}\) = 2\(\sqrt{3}\) x 2\(\sqrt{3}\) = 2 × 2 × \(\sqrt{3}\) × \(\sqrt{3}\) = 4 × 3 = 12,

\((\sqrt{5})^{2}\) = \(\sqrt{5}\) × \(\sqrt{5}\) = 5

Since, 12 is greater than 5. 

So, 2\(\sqrt{3}\) is greater than \(\sqrt{5}\).


4. Arrange the following in ascending order:

\(\sqrt{5}\), \(\sqrt{3}\), \(\sqrt{11}\), \(\sqrt{21}\), \(\sqrt{13}\).

Solution:

Arranging in ascending order stands for arrangement of series from smaller value to the larger value. To arrange the given series in ascending order let us find the square of every element of the series. So,

 \((\sqrt{5})^{2}\) = \(\sqrt{5}\) × \(\sqrt{5}\) = 5.

\((\sqrt{3})^{2}\) = \(\sqrt{3}\) × \(\sqrt{3}\) = 3.

\((\sqrt{11})^{2}\) = \(\sqrt{11}\) × \(\sqrt{11}\) = 11.

\((\sqrt{21})^{2}\) = \(\sqrt{21}\) × \(\sqrt{21}\) = 21.

\((\sqrt{13})^{2}\) = \(\sqrt{13}\) × \(\sqrt{13}\) = 13.

Since, 3 < 5 < 11 < 13 < 21. Hence, the required order of the series is:

\(\sqrt{3}\) < \(\sqrt{5}\) < \(\sqrt{11}\) < \(\sqrt{13}\) < \(\sqrt{21}\).


5. Arrange the following in descending order:

\(\sqrt[3]{5}\), \(\sqrt[3]{7}\), \(\sqrt[3]{15}\), \(\sqrt[3]{2}\), \(\sqrt[3]{39}\).

Solution:

Descending order stands for arrangement of given series in larger value to the smaller value. To find the required series, let us find the cube of each element of the series. So,

\((\sqrt[3]{5})^{3}\) = \(\sqrt[3]{5}\) × \(\sqrt[3]{5}\) × \(\sqrt[3]{5}\) = 5.

\((\sqrt[3]{7})^{3}\) = \(\sqrt[3]{7}\) × \(\sqrt[3]{7}\) × \(\sqrt[3]{7}\) = 7.

\((\sqrt[3]{15})^{3}\) = \(\sqrt[3]{15}\) × \(\sqrt[3]{15}\) × \(\sqrt[3]{15}\) = 15.

\((\sqrt[3]{2})^{3}\) = \(\sqrt[3]{2}\) × \(\sqrt[3]{2}\) x \(\sqrt[3]{2}\) = 2.

\((\sqrt[3]{39})^{3}\) = \(\sqrt[3]{39}\) × \(\sqrt[3]{39}\) × \(\sqrt[3]{39}\) = 39.

Since, 39 > 15 > 7 > 5 > 2. 

So, the required order of the series is:

\(\sqrt[3]{39}\) > \(\sqrt[3]{15}\) > \(\sqrt[3]{7}\) > \(\sqrt[3]{5}\) > \(\sqrt[3]{2}\)


Irrational Numbers

Definition of Irrational Numbers

Representation of Irrational Numbers on The Number Line

Comparison between Two Irrational Numbers

Comparison between Rational and Irrational Numbers

Rationalization

Problems on Irrational Numbers

Problems on Rationalizing the Denominator

Worksheet on Irrational Numbers




9th Grade Math

From Comparison between Two Irrational Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplication Table | Learn Tables from 0 – 25 | Multiplication Table

    Jan 14, 25 11:09 PM

    multiplication table
    In math multiplication table we will learn the tables from 0 – 25. These multiplication tables help the students to learn the essential multiplication facts. Multiplication tables are very important f…

    Read More

  2. 3rd Grade Math Worksheets |3rd Grade Math Sheets|3rd Grade Math Lesson

    Jan 14, 25 11:02 PM

    3rd Grade Math Worksheets
    3rd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  3. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:57 PM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  4. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More

  5. Word Problems on Subtraction |Worksheet on Subtraction Word Problems |

    Jan 14, 25 12:21 AM

    Subtraction Problem
    In word problems on subtraction we need to read the question carefully and understand what we need to find out. We know, in subtraction the larger number from which we subtract the other number (the s…

    Read More