Circle Through the Intersection of Two Circles

We will learn how to find the equation of a circle through the intersection of two given circles.

The equation of a family of circles passing through the intersection of the circles P\(_{1}\) = x\(^{2}\) + y\(^{2}\) + 2g\(_{1}\)x + 2f\(_{1}\)y + c\(_{1}\) = 0 and P\(_{2}\) = x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\) = 0 is P\(_{1}\) + λP\(_{2}\) = 0 i.e., (x\(^{2}\) + y\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c\(_{1}\)) + λ(x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\)) = 0, where λ (≠ -1) in an arbitrary real number.

Proof:

Let the equations of the given circles be 

P\(_{1}\) = x\(^{2}\) + y\(^{2}\) + 2g\(_{1}\)x + 2f\(_{1}\)y + c\(_{1}\) = 0 ………………………..(i) and

P\(_{2}\) = x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\) ………………………..(ii)

Circle Through the Intersection of Two CirclesCircle Through the Intersection of Two Circles

Consider the equation P\(_{1}\) + λP\(_{2}\) = 0 i.e., the equation of any curve through the points of intersection of the circles (1) and (2) is

(x\(^{2}\) + y\(^{2}\) + 2g\(_{1}\)x + 2f\(_{1}\)y + c\(_{1}\)) + λ(x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\)) = 0 ………………………..(iii)

Clearly, it represents a circle for all values of λ except λ = -1. For λ = -1 (iii) becomes a first degree equation in x, y which represents a line. In order to prove that it passes through the points of intersection of the two given circles, it is sufficient to show that their points of intersection satisfy (iii).

Let (x\(_{1}\), y\(_{1}\)) be a point of intersection of the given circles.

Then,
\(\mathrm{x_{1}^{2} + y_{1}^{2} + 2g_{1}x_{1} + 2f_{1}y_{1} + c_{1}}\) and \(\mathrm{x_{1}^{2} + y_{1}^{2} + 2g_{2}x_{1} + 2f_{2}y_{1} + c_{2}}\)

⇒ (\(\mathrm{x_{1}^{2} + y_{1}^{2} + 2g_{1}x_{1} + 2f_{1}y_{1} + c_{1}}\)) +  λ(\(\mathrm{x_{1}^{2} + y_{1}^{2} + 2g_{2}x_{1} + 2f_{2}y_{1} + c_{2}}\)) = 0 + λ0 = 0

⇒ (x\(_{1}\), y\(_{1}\)) lies on (iii).

Similarly, it can be proved that the second point of intersection of the given circles also satisfy (i)

Hence, (iii) gives the family of circles passing through the intersection of the given circles.

In other words, the equation of any curve through the points of intersection of the circles (i) and (ii) is
(x\(^{2}\) + y\(^{2}\) + 2g\(_{1}\)x + 2f\(_{1}\)y + c\(_{1}\)) + λ(x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\))………………………..(iv)

⇒ (1 + λ)(x\(^{2}\) + y\(^{2}\)) + 2(g\(_{1}\) + g\(_{2}\)λ)x + 2(f\(_{1}\) + f\(_{2}\)λ)y + c\(_{1}\) + λc\(_{2}\) = 0

⇒ x\(^{2}\) + y\(^{2}\) + 2 ∙ \(\mathrm{\frac{g_{1} + g_{2}λ}{1 + λ}}\) x + 2 ∙ \(\mathrm{\frac{f_{1} + f_{2}λ}{1 + λ}}\)y + \(\mathrm{\frac{c_{1} + c_{2}λ}{1 + λ}}\) = 0 ………………………..(v)   

If λ ≠ - 1, then equation (v) will represent the equation of a circle. Therefore, the equation (iv) represents the family of circles through the points of intersection of the circles (1) and (2). 


Solved examples to find the equations of a circle through the points of intersection of two given circles: 

1. Find the equation of the circle through the intersection of the circles x\(^{2}\) + y\(^{2}\) - 8x - 2y + 7 = 0 and x\(^{2}\) + y\(^{2}\) - 4x + 10y + 8 = 0 and passes through the point (-1, -2).

Solution:

The equation of any circles passing through the intersection of the circles S\(_{1}\) = x\(^{2}\) + y\(^{2}\) - 8x - 2y + 7 = 0 and S\(_{2}\) = x\(^{2}\) + y\(^{2}\) - 4x + 10y + 8 = 0 is S\(_{1}\) + λS\(_{2}\) = 0 

Therefore, the equation of the required circle is (x\(^{2}\) + y\(^{2}\) - 8x - 2y + 7) + λ(x\(^{2}\) + y\(^{2}\) - 4x + 10y + 8) = 0, where λ (≠ -1) in an arbitrary real number

This circle passes through the point (-1, -2), therefore, 
 (1 + λ) + 4(1 + λ) + 4(2 + λ) + 4(1 - 5λ) + 7 + 8λ = 0

⇒ 24 - 3λ = 0

⇒ λ = 8

Now putting the value of λ = 8 in the equation (x\(^{2}\) + y\(^{2}\) - 8x - 2y + 7) + λ(x\(^{2}\) + y\(^{2}\) - 4x + 10y + 8) = 0 we get the required equation as 9x\(^{2}\) + 9y\(^{2}\) – 40x + 78y + 71 = 0.


2. Find the equation of the circle through the intersection of the circles x\(^{2}\) + y\(^{2}\) - x + 7y - 3 = 0 and x\(^{2}\) + y\(^{2}\) - 5x - y + 1 = 0, having its centre on the line x + y = 0. 

Solution:

x\(^{2}\) + y\(^{2}\) - x + 7y - 3 + λ(x\(^{2}\) + y\(^{2}\) - 5x - y + 1) = 0, (λ ≠1)

⇒(1 + λ) (x\(^{2}\) + y\(^{2}\)) - (1 +  5λ)x + (7 - λ)y - 3 + λ = 0

⇒ x\(^{2}\) + y\(^{2}\) - \(\frac{1 + 5λ}{1 + λ}\)x - \(\frac{λ - 7}{1 + λ}\)y + \(\frac{λ - 3}{1 + λ}\) = 0 …………….(i)

Clearly, the co-ordinates of the centre of the circle (i) are [\(\frac{1 + 5λ}{2(1 + λ)}\), \(\frac{λ - 7}{2(1 + λ)}\)] By question, this point lies on the line x + y = 0. 

Therefore, \(\frac{1 + 5λ}{2(1 + λ)}\) + \(\frac{λ - 7}{2(1 + λ)}\) = 0 

⇒1 + 5λ + λ - 7 = 0 

⇒ 6λ =  6

⇒ λ = 1

Therefore, the equation of the required circle is 2(x\(^{2}\) + y\(^{2}\)) - 6x + 6y - 2 = 0, [putting λ = 1 in (1)] 

⇒ x\(^{2}\) + y\(^{2}\) - 3x + 3y - 1 = 0. 

 The Circle




11 and 12 Grade Math 

From Circle through the Intersection of Two Circles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Subtraction of 4-Digit Numbers | Subtract Numbers with Four Digit

    Jan 12, 25 03:23 AM

    Properties of Subtraction of 4-Digit Numbers
    We will learn about the subtraction of 4-digit numbers (without borrowing and with borrowing). We know when one number is subtracted from another number the result obtained is called the difference.

    Read More

  2. 3rd Grade Addition Worksheet | 3-Digit Addition | Word Problems | Ans

    Jan 11, 25 01:06 PM

    3rd Grade Addition Games
    In 3th Grade Addition Worksheet we will solve how to addition of 3-digit numbers without regrouping, addition of three 3-digit numbers without regrouping, addition of 3-digit numbers with regrouping…

    Read More

  3. Addition of 4-Digit Numbers | 4-Digit Addition |Adding 4-Digit Numbers

    Jan 11, 25 03:16 AM

    Addition of 4-Digit Numbers
    We will learn about the addition of 4-digit numbers (without carrying and with carrying). We know how to add 2 or 3, 3-digit numbers without carrying or with carrying.

    Read More

  4. Worksheet on Addition of 4-Digit Numbers | 4 Digit Addition Worksheets

    Jan 11, 25 02:48 AM

    Worksheet on Addition of 4-Digit Numbers
    Practice the questions given in the worksheet on addition of 4-digit numbers. Here we will add two 4-digit numbers (without carrying and with carrying) and three 4-digit numbers

    Read More

  5. Word Problems on 4-Digit Numbers |Addition and Subtraction of 4-Digits

    Jan 10, 25 02:49 PM

    Word Problems on 4-Digit Numbers
    We will solve here some of the word problems on addition and subtraction of 4-digit numbers. We will apply the same method while adding and subtracting the word problems. 1. In a village, there are 25…

    Read More