Centroid of a Triangle

The Centroid of a triangle is the point of intersection of the medians of a triangle.

To find the centroid of a triangle

Let A (x\(_{1}\), y\(_{1}\)), B (x\(_{2}\), y\(_{2}\)) and C (x\(_{3}\), y\(_{3}\)) are  the three vertices of the ∆ABC .

Let D be the midpoint of side BC.

Since, the coordinates of B (x\(_{2}\), y\(_{2}\)) and C (x\(_{3}\), y\(_{3}\)), the coordinate of the point D are (\(\frac{x_{2} + x_{3}}{2}\), \(\frac{y_{2} + y_{3}}{2}\)).

Let G(x, y) be the centroid of the triangle ABC.

Then, from the geometry, G is on the median AD and it divides AD in the ratio 2 : 1, that is AG : GD = 2 : 1.

Therefore, x = \(\left \{\frac{2\cdot \frac{(x_{2} + x_{3})}{2} + 1 \cdot x_{1}}{2 + 1}\right \}\) = \(\frac{x_{1} + x _{2} + x_{3}}{3}\)

y = \(\left \{\frac{2\cdot \frac{(y_{2} + y_{3})}{2} + 1 \cdot y_{1}}{2 + 1}\right \}\) = \(\frac{y_{1} + y _{2} + y_{3}}{3}\)

Therefore, the coordinate of the G are (\(\frac{x_{1} + x _{2} + x_{3}}{3}\), \(\frac{y_{1} + y _{2} + y_{3}}{3}\))

Hence, the centroid of a triangle whose vertices are (x\(_{1}\), y\(_{1}\)), (x\(_{2}\), y\(_{2}\)) and (x\(_{3}\), y\(_{3}\)) has the coordinates (\(\frac{x_{1} + x _{2} + x_{3}}{3}\), \(\frac{y_{1} + y _{2} + y_{3}}{3}\)).


Note: The centroid of a triangle divides each median in the ratio 2 : 1 (vertex to base).


Solved examples to find the centroid of a triangle:

1. Find the co-ordinates of the point of intersection of the medians of trangle ABC; given A = (-2, 3), B = (6, 7) and C = (4, 1).

Solution:

Here, (x\(_{1}\)  = -2, y\(_{1}\) = 3), (x\(_{2}\)  = 6, y\(_{2}\) = 7) and  (x\(_{3}\)  = 4, y\(_{3}\) = 1),

Let G (x, y) be the centroid of the triangle ABC. Then,

x = \(\frac{x_{1} + x _{2} + x_{3}}{3}\) = \(\frac{(-2) + 6 + 4}{3}\) = \(\frac{8}{3}\)

y = \(\frac{y_{1} + y _{2} + y_{3}}{3}\) = \(\frac{3 + 7 + 1}{3}\) = \(\frac{11}{3}\)

Therefore, the coordinates of the centroid G of the triangle ABC are (\(\frac{8}{3}\), \(\frac{11}{3}\))

Thus, the coordinates of the point of intersection of the medians of triangle are (\(\frac{8}{3}\), \(\frac{11}{3}\)).


2. The three vertices of the triangle ABC are (1, -4), (-2, 2) and (4, 5) respectively. Find the centroid and the length of the median through the vertex A.

Solution:

 Here, (x\(_{1}\)  = 1, y\(_{1}\) = -4), (x\(_{2}\)  = -2, y\(_{2}\) = 2) and  (x\(_{3}\)  = 4, y\(_{3}\) = 5),

Let G (x, y) be the centroid of the triangle ABC. Then,

x = \(\frac{x_{1} + x _{2} + x_{3}}{3}\) = \(\frac{1 + (-2) + 4}{3}\) = \(\frac{3}{3}\) = 1

y = \(\frac{y_{1} + y _{2} + y_{3}}{3}\) = \(\frac{(-4) + 2 + 5}{3}\) = \(\frac{3}{3}\) = 1

Therefore, the coordinates of the centroid G of the triangle ABC are (1, 1).

D is the middle point of the side BC of the triangle ABC.

Therefore, the coordinates of D are (\(\frac{(-2) + 4}{2}\), \(\frac{2 + 5}{2}\)) = (1, \(\frac{7}{2}\))

Therefore, the length of the median AD = \(\sqrt{(1 - 1)^{2} + (-4 - \frac{7}{2})^{2}}\) = \(\frac{15}{2}\) units.


3. Two vertices of a triangle are (1, 4) and (3, 1). If the centroid of the triangle is the origin, find the third vertex.

Solution:

Let the coordinates of the third vertex are (h, k).

Therefore, the coordinates of the centroid of the triangle (\(\frac{1 + 3 + h}{3}\), \(\frac{4 + 1 + k}{3}\))

According to the problem we know that the centroid of the given triangle is (0, 0)

Therefore,

\(\frac{1 + 3 + h}{3}\) = 0 and \(\frac{4 + 1 + k}{3}\) = 0

⟹ h = -4 and k = -5

Therefore, the third vertex of the given triangle are (-4, -5).

 Distance and Section Formulae





10th Grade Math

From Centroid of a Triangle to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Mixed Addition and Subtraction | Questions on Addition

    Jan 12, 25 02:14 PM

    In worksheet on mixed addition and subtraction the questions involve both addition and subtraction together; all grade students can practice the questions on addition and subtraction together.

    Read More

  2. Estimating Sums and Differences | Estimations | Practical Calculations

    Jan 12, 25 02:02 PM

    Estimating Difference
    For estimating sums and differences in the number we use the rounded numbers for estimations to its nearest tens, hundred, and thousand. In many practical calculations, only an approximation is requir…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jan 12, 25 01:36 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Checking Subtraction using Addition |Use Addition to Check Subtraction

    Jan 12, 25 01:13 PM

    Checking Subtraction using Addition Worksheet
    We can check subtraction by adding the difference to the smaller number. Since the sum of difference and smaller number is equal to the larger number, subtraction is correct.

    Read More

  5. Worksheet on Subtraction of 4-Digit Numbers|Subtracting 4-Digit Number

    Jan 12, 25 09:04 AM

    Worksheet on Subtraction of 4-Digit Numbers
    Practice the questions given in the worksheet on subtraction of 4-digit numbers. Here we will subtract two 4-digit numbers (without borrowing and with borrowing) to find the difference between them.

    Read More