Centre of the Ellipse

We will discuss about the centre of the ellipse along with the examples.

The centre of a conic section is a point which bisects every chord passing through it.


Definition of the centre of the ellipse:

The mid-point of the line-segment joining the vertices of an ellipse is called its centre.

Suppose the equation of the ellipse be \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 then, from the above figure we observe that C is the mid-point of the line-segment AA', where A and A' are the two vertices. In case of the ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1, every chord is bisected at C (0, 0).

Therefore, C is the centre of the ellipse and its co-ordinates are (0, 0).

Solved examples to find the centre of an ellipse:

1. Find the co-ordinates of the centre of the ellipse 3x\(^{2}\) + 2y\(^{2}\) - 6 = 0.

Solution:

The given equation of the ellipse is 3x\(^{2}\) + 2y\(^{2}\) - 6 = 0.

Now form the above equation we get,

3x\(^{2}\) + 2y\(^{2}\) - 6 = 0

⇒ 3x\(^{2}\) + 2y\(^{2}\) = 6

Now dividing both sides by 6, we get

\(\frac{x^{2}}{2}\) + \(\frac{y^{2}}{3}\) = 1 ………….. (i)

This equation is of the form \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 (a\(^{2}\) > b\(^{2}\)).

Clearly, the centre of the ellipse (1) is at the origin.

Therefore, the co-ordinates of the centre of the ellipse 3x\(^{2}\) + 2y\(^{2}\) - 6 = 0 is (0, 0)

 

2. Find the co-ordinates of the centre the ellipse 5x\(^{2}\) + 9y\(^{2}\) - 10x + 90y + 185 = 0.

Solution:    

The given equation of the ellipse is 5x\(^{2}\) + 9y\(^{2}\) - 10x + 90y + 185 = 0.

Now form the above equation we get,

5x\(^{2}\) + 9y\(^{2}\) - 10x + 90y + 185 = 0

⇒ 5x\(^{2}\) - 10x + 5 + 9y\(^{2}\) + 90y + 225 + 185  - 5 - 225 = 0

⇒ 5(x\(^{2}\) - 2x + 1) + 9(y\(^{2}\) + 10y + 25) =  45

\(\frac{(x - 1)^{2}}{9}\) + \(\frac{(y + 5)^{2}}{5}\) = 1

We know that the equation of the ellipse having centre at (α, β) and major and minor axes parallel to x and y-axes respectively is, \(\frac{(x - α)^{2}}{a^{2}}\) + \(\frac{(y - β)^{2}}{b^{2}}\) = 1.

Now, comparing equation \(\frac{(x - 1)^{2}}{9}\) + \(\frac{(y + 5)^{2}}{5}\) = 1 with equation \(\frac{(x - α)^{2}}{a^{2}}\) + \(\frac{(y - β)^{2}}{b^{2}}\) = 1 we get,

α = 1, β = - 5, a\(^{2}\) = 9 ⇒ a = 3 and b\(^{2}\) = 5 ⇒ b = √5.

Therefore, the co-ordinates of its centre are (α, β) i.e., (1, - 5).

● The Ellipse





11 and 12 Grade Math 

From Centre of the Ellipse to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplication Table | Learn Tables from 0 – 25 | Multiplication Table

    Jan 14, 25 11:53 PM

    multiplication table
    In math multiplication table we will learn the tables from 0 – 25. These multiplication tables help the students to learn the essential multiplication facts. Multiplication tables are very important f…

    Read More

  2. 3rd Grade Math Worksheets |3rd Grade Math Sheets|3rd Grade Math Lesson

    Jan 14, 25 11:02 PM

    3rd Grade Math Worksheets
    3rd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  3. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:57 PM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  4. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More

  5. Word Problems on Subtraction |Worksheet on Subtraction Word Problems |

    Jan 14, 25 12:21 AM

    Subtraction Problem
    In word problems on subtraction we need to read the question carefully and understand what we need to find out. We know, in subtraction the larger number from which we subtract the other number (the s…

    Read More