Binary Addition using 1’s Complement

In binary addition using 1’s complement;

A. Addition of a positive and a negative binary number

We discuss the following cases under this.

Case I: When the positive number has greater magnitude.

In this case addition of numbers is performed after taking 1’s complement of the negative number and the end-around carry of the sum is added to the least significant bit.


The following examples will illustrate this method in binary addition using 1’s complement:

1. Find the sum of the following binary numbers:

(i) + 1110 and - 1101

Solution:

            + 1 1 1 0      ⇒      0 1 1 1 0

            - 1 1 0 1      ⇒      1 0 0 1 0      (taking 1’s complement)

                                      0 0 0 0 0

                                                 1      carry

                                      0 0 0 0 1

Hence the required sum is + 0001.


(ii) + 1101 and - 1011

(Assume that the representation is in a signed 5-bit register).

Solution:

           + 1 1 0 1      ⇒      0 1 1 0 1

            - 1 0 1 1      ⇒      1 0 1 0 0      (taking 1’s complement)

                                      0 0 0 0 1

                                                 1      carry

                                       0 0 0 1 0

Hence the required sum is + 0010.


Case II: When the negative number has greater magnitude.

In this case the addition is carried in the same way as in case 1 but there will be non end-around carry. The sum is obtained by taking 1’s complement of the magnitude bits of the result and it will be negative.


The following examples will illustrate this method in binary addition using 1’s complement:

Find the sum of the following binary numbers represented in a sign-plus-magnitude 5-bit register:

(i) + 1010 and - 1100

Solution:

           + 1 0 1 0      ⇒      0 1 0 1 0

            - 1 1 0 0      ⇒      1 0 0 1 1      (1’s complement)

                                      1 1 1 0 1

Hence the required sum is – 0010.

(ii) + 0011 and - 1101.

Solution:

           + 0 0 1 1      ⇒      0 0 0 1 1

            - 1 1 0 1      ⇒      1 0 0 1 0      (1’s complement)

                                      1 0 1 0 1

Hence the required sum is – 1010.


B. When the two numbers are negative

For the addition of two negative numbers 1’s complements of both the numbers are to be taken and then added. In this case an end-around carry will always appear. This along with a carry from the MSB (i.e. the 4th bit in the case of sign-plus-magnitude 5-bit register) will generate a 1 in the sign bit. 1’s complement of the magnitude bits of the result of addition will give the final sum.

The following examples will illustrate this method in binary addition using 1’s complement:

Find the sum of the following negative numbers represented in a sign-plus-magnitude 5-bit register:

(i) -1010 and -0101

Solution:

            - 1 0 1 0      ⇒      1 0 1 0 1      (1’s complement)

            - 0 1 0 1      ⇒      1 1 0 1 0      (1’s complement)

                                      0 1 1 1 1

                                                 1      carry

                                      1 0 0 0 0

1’s complement of the magnitude bits of sum is 1111 and the sign bit is 1.

Hence the required sum is -1111.


(ii) -0110 and -0111.

Solution:

            - 0 1 1 0      ⇒      1 1 0 0 1      (1’s complement)

            - 0 1 1 1      ⇒      1 1 0 0 0      (1’s complement)

                                      1 0 0 0 1

                                                 1      carry

                                      1 0 0 1 0

1’s complement of 0010 is 1101 and the sign bit is 1.

Hence the required sum is - 1101.

Binary Numbers

  • Decimal Number System
  • Why Binary Numbers are Used
  • Binary to Decimal Conversion
  • Conversion of Numbers
  • Hexa-decimal Number System
  • Conversion of Binary Numbers to Octal or Hexa-decimal Numbers
  • Octal and Hexa-Decimal Numbers
  • Signed-magnitude Representation
  • Radix Complement
  • Diminished Radix Complement
  • Arithmetic Operations of Binary Numbers


From Binary Addition using 1's Complement to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Addition of 4-Digit Numbers | 4 Digit Addition Worksheets

    Jan 10, 25 03:02 PM

    Worksheet on Addition of 4-Digit Numbers
    Practice the questions given in the worksheet on addition of 4-digit numbers. Here we will add two 4-digit numbers (without carrying and with carrying) and three 4-digit numbers

    Read More

  2. Word Problems on 4-Digit Numbers |Addition and Subtraction of 4-Digits

    Jan 10, 25 02:49 PM

    Word Problems on 4-Digit Numbers
    We will solve here some of the word problems on addition and subtraction of 4-digit numbers. We will apply the same method while adding and subtracting the word problems. 1. In a village, there are 25…

    Read More

  3. Addition of 10, 100 and 1000 | Adding 10 | Adding 100 | Adding 1000

    Jan 10, 25 01:20 AM

    Adding 10
    Here we will learn Addition of 10, 100 and 1000 with the help of different examples.

    Read More

  4. Estimating a Sum | Round the Number | Numbers by Rounding | Estimating

    Jan 10, 25 12:10 AM

    Estimating the Sum
    We will learn the basic knowledge for estimating a sum. Here we will learn an easy way to estimate a sum of two numbers by rounding. In case of two digit numbers we can only round the number

    Read More

  5. Addition of 4-Digit Numbers | 4-Digit Addition |Adding 4-Digit Numbers

    Jan 09, 25 10:07 PM

    Addition of 4-Digit Numbers
    We will learn about the addition of 4-digit numbers (without carrying and with carrying). We know how to add 2 or 3, 3-digit numbers without carrying or with carrying.

    Read More