Basic Proportionality Theorem

Here we will learn how to prove the basic proportionality theorem with diagram.

A line drawn parallel to one side of a triangle divides the other two sides proportionally.

Given: In ∆XYZ, P and Q are points on XY and XZ respectively, such that PQ ∥ YZ.

Basic Proportionality Theorem

To prove: \(\frac{XP}{PY}\) = \(\frac{XQ}{QZ}\).

Proof:

            Statement

            Reason

1. In ∆XYZ and ∆XPQ,

(i) ∠YXZ = ∠PXQ

(ii) ∠XYZ = ∠XPQ

1.

(i) Common angle

(ii) Corresponding angles

2. ∆XYZ ∼ ∆XPQ

2. AA criterion of similarity.

3. \(\frac{XY}{XP}\) = \(\frac{XZ}{XQ}\)

3. Corresponding sides of similar triangles are proportional.

4. \(\frac{XY}{XP}\) – 1 = \(\frac{XZ}{XQ}\) – 1

⟹ \(\frac{XY - XP}{XP}\) = \(\frac{XZ - XQ}{XQ}\)

⟹ \(\frac{PY}{XP}\) = \(\frac{QZ}{XQ}\)

4. By subtracting 1 from both sides of statement 3.

5. \(\frac{XP}{PY}\) = \(\frac{XQ}{QZ}\)

5. Taking reciprocals of both sides in statement 4.


Solved examples using basic proportionality theorem:

1. If in a ∆XYZ, P and Q are two points on XY and XZ respectively such that XP = 4 cm, PY = 3 cm, XQ = = 6 cm, QZ = 4.5 cm and ∠XPQ = 40° then find ∠XYZ.

Problems on Basic Proportionality Theorem

Solution:

Here, \(\frac{XP}{PY}\) = \(\frac{4 cm}{3 cm}\) = \(\frac{4}{3}\), and

\(\frac{XQ}{QZ}\) = \(\frac{6 cm}{4.5 cm}\) = \(\frac{4}{3}\)

Therefore, \(\frac{XP}{PY}\) = \(\frac{XQ}{QZ}\)

⟹ PQ ∥ YZ

Therefore,  ∠XYZ = ∠XPQ = 40°.


2. In the given figure, if XP = 6 cm, YP = 2 cm, XQ = 7.5 cm, find QZ.

Numerical Problems on Basic Proportionality Theorem

Solution:

By basic proportionality theorem,

\(\frac{XP}{PY}\) = \(\frac{XQ}{QZ}\)

⟹ \(\frac{6 cm}{2 cm}\) = \(\frac{7.5 cm}{QZ}\)

⟹ QZ = \(\frac{7.5 cm × 2}{6}\)

⟹ QZ = 2.5 cm.


3. At a certain time of the day, a man, 6 feet tall, casts his shadow 8 feet long. Find the length of the shadow cast by a building 45 feet high, at the same time.

Solution:

Let the length of the shadow of the building be x.

Basic Proportionality Theorem Problem

As the source of light is the sun, XZ ∥ PQ and, hence ∆YXZ ∼ ∆YPQ.

Therefore, \(\frac{\textrm{Height of the Man}}{\textrm{Height of the Building}}\) = \(\frac{\textrm{Length of Shadow Cast by the Man}}{\textrm{Length of Shadow Cast by the Building}}\)

⟹ \(\frac{6 ft}{45 ft}\) = \(\frac{8 ft}{x}\)

⟹ x = 60 feet.







9th Grade Math

From Basic Proportionality Theorem to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Yesterday, Today and Tomorrow | Sequence of the Week-days

    Nov 25, 24 01:18 AM

    Practice the worksheet on yesterday, today and tomorrow, the questions are based on the sequence of the week-days, their names and order. We know, the present day is today, the day before today

    Read More

  2. Yesterday, Today and Tomorrow | Name of each Day of the Week

    Nov 25, 24 01:09 AM

    We will learn the relation between yesterday, today and tomorrow. There are seven days in a week. We know the name of each day of the week. Sunday is known as the first day of the week.

    Read More

  3. The Story about Seasons | Spring | Summer | Autumn | Winter

    Nov 25, 24 12:48 AM

    The Four Seasons
    Kids let’s enjoy the story about seasons. Here we will discuss about the four seasons and the duration. Some months are too hot and some are too cold. The period of hot months is called the hot

    Read More

  4. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Nov 25, 24 12:17 AM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 24, 24 11:01 PM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More