Basic Math Formulas

The list of basic math formulas which is very useful for mainly 11 grade, 12 grade and college grade students. Math formulas are very important and necessary to know the correct formula while solving the questions on different topics. If we remember math formulas we can solve any type of math questions.

LIST OF IMPORTANT MATH FORMULAS AND RESULTS

Algebra:

● Laws of Indices:

(i) aᵐ ∙ aⁿ = aᵐ + ⁿ

(ii) aᵐ/aⁿ = aᵐ - ⁿ

(iii) (aᵐ)ⁿ = aᵐⁿ

(iv) a = 1 (a ≠ 0).

(v) a-ⁿ = 1/aⁿ

(vi) ⁿ√aᵐ = aᵐ/ⁿ

(vii) (ab)ᵐ = aᵐ ∙ bⁿ.

(viii) (a/b)ᵐ = aᵐ/bⁿ

(ix) If aᵐ = bᵐ (m ≠ 0), then a = b.

(x) If aᵐ = aⁿ then m = n.

● Surds:

(i) The surd conjugate of √a + √b (or a + √b) is √a - √b (or a - √b) and conversely.

(ii) If a is rational, √b is a surd and a + √b (or, a - √b) = 0 then a = 0 and b = 0.

(iii) If a and x are rational, √b and √y are surds and a + √b = x + √y then a = x and b = y.



● Complex Numbers:

(i) The symbol z = (x, y) = x + iy where x, y are real and i = √-1, is called a complex (or, imaginary) quantity;x is called the real part and y, the imaginary part of the complex number z = x + iy.

(ii) If z = x + iy then z = x - iy and conversely; here, z is the complex conjugate of z.

(iii) If z = x+ iy then

(a) mod. z (or, | z | or, | x + iy | ) = + √(x² + y²) and

(b) amp. z (or, arg. z) = Ф = tan\(^{-1}\) y/x (-π < Ф ≤ π).

(iv) The modulus - amplitude form of a complex quantity z is

z = r (cosф + i sinф); here, r = | z | and ф = arg. z (-π < Ф <= π).

(v) | z | = | -z | = z ∙ z = √ (x² + y²).

(vi) If x + iy= 0 then x = 0 and y = 0(x,y are real).

(vii) If x + iy = p + iq then x = p and y = q(x, y, p and q all are real).

(viii) i = √-1, i² = -1, i³ = -i, and i⁴ = 1.

(ix) | z₁ + z₂| ≤ | z₁ | + | z₂ |.

(x) | z₁ z₂ | = | z₁ | ∙ | z₂ |.

(xi) | z₁/z₂| = | z₁ |/| z₂ |.

(xii) (a) arg. (z₁ z₂) = arg. z₁ + arg. z₂ + m

(b) arg. (z₁/z₂) = arg. z₁ - arg. z₂ + m where m = 0 or, 2π or, (- 2π).

(xiii) If ω be the imaginary cube root of unity then ω = ½ (- 1 + √3i) or, ω = ½ (-1 - √3i)

(xiv) ω³ = 1 and 1 + ω + ω² = 0



● Variation:

(i) If x varies directly as y, we write x ∝ y or, x = ky where k is a constant of variation.

(ii) If x varies inversely as y, we write x ∝ 1/y or, x = m ∙ (1/y) where m is a constant of variation.

(iii) If x ∝ y when z is constant and x ∝ z when y is constant then x ∝ yz when both y and z vary.



● Arithmetical Progression (A.P.):

(i) The general form of an A. P. is a, a + d, a + 2d, a + 3d,.....

where a is the first term and d, the common difference of the A.P.

(ii) The nth term of the above A.P. is t₀ = a + (n - 1)d.

(iii) The sum of first n terns of the above A.P. is s = n/2 (a + l) = (No. of terms/2)[1st term + last term] or, S = ⁿ/₂ [2a + (n - 1) d]

(iv) The arithmetic mean between two given numbers a and b is (a + b)/2.

(v) 1 + 2 + 3 + ...... + n = [n(n + 1)]/2.

(vi) 1² + 2² + 3² +……………. + n² = [n(n+ 1)(2n+ 1)]/6.

(vii) 1³ + 2³ + 3³ + . . . . + n³ = [{n(n + 1)}/2 ]².

● Geometrical Progression (G.P.) :

(i) The general form of a G.P. is a, ar, ar², ar³, . . . . . where a is the first term and r, the common ratio of the G.P.

(ii) The n th term of the above G.P. is t₀ = a.r\(^{n - 1}\) .

(iii) The sum of first n terms of the above G.P. is S = a ∙ [(1 - rⁿ)/(1 – r)] when -1 < r < 1

or, S = a ∙ [(rⁿ – 1)/(r – 1) ]when r > 1 or r < -1.

(iv) The geometric mean of two positive numbers a and b is √(ab) or, -√(ab).

(v) a + ar + ar² + ……………. ∞ = a/(1 – r) where (-1 < r < 1).



● Theory of Quadratic Equation :

ax² + bx + c = 0 ... (1)

(i) Roots of the equation (1) are x = {-b ± √(b² – 4ac)}/2a.

(ii) If α and β be the roots of the equation (1) then,

sum of its roots = α + β = - b/a = - (coefficient of x)/(coefficient of x² );

and product of its roots = αβ = c/a = (Constant term /(Coefficient of x²).

(iii) The quadratic equation whose roots are α and β is

x² - (α + β)x + αβ = 0

i.e. , x² - (sum of the roots) x + product of the roots = 0.

(iv) The expression (b² - 4ac) is called the discriminant of equation (1).

(v) If a, b, c are real and rational then the roots of equation (1) are

(a) real and distinct when b² - 4ac > 0;

(b) real and equal when b² - 4ac = 0;

(c) imaginary when b² - 4ac < 0;

(d) rational when b²- 4ac is a perfect square and

(e) irrational when b² - 4ac is not a perfect square.

(vi) If α + iβ be one root of equation (1) then its other root will be conjugate complex quantity α - iβ and conversely (a, b, c are real).

(vii) If α + √β be one root of equation (1) then its other root will be conjugate irrational quantity α - √β (a, b, c are rational).



● Permutation:

(i) ⌊n (or, n!) = n (n – 1) (n – 2) ∙∙∙∙∙∙∙∙∙ 3∙2∙1.

(ii) 0! = 1.

(iii) Number of permutations of n different things taken r ( ≤ n) at a time ⁿP₀ = n!/(n - 1)! = n (n – 1)(n - 2) ∙∙∙∙∙∙∙∙ (n - r + 1).

(iv) Number of permutations of n different things taken all at a time = ⁿP₀ = n!.

(v) Number of permutations of n things taken all at a time in which p things are alike of a first kind, q things are alike of a second kind, r things are alike of a third kind and the rest are all different, is ⁿ<span style='font-size: 50%'>!/₀

(vi) Number of permutations of n different things taken r at a time when each thing may be repeated upto r times in any permutation, is nʳ .





● Combination:

(i) Number of combinations of n different things taken r at a time = ⁿCr = \(\frac{n!}{r!(n - r)!}\)

(ii) ⁿP₀ = r!∙ ⁿC₀.

(iii) ⁿC₀ = ⁿCn = 1.

(iv) ⁿCr = ⁿCn - r.

(v) ⁿCr + ⁿCn - 1 = \(^{n + 1}\)C\(_{r}\)

(vi) If p ≠ q and ⁿCp = ⁿCq then p + q = n.

(vii) ⁿCr/ⁿCr - 1 = (n - r + 1)/r.

(viii) The total number of combinations of n different things taken any number at a time = ⁿC₁ + ⁿC₂ + ⁿC₃ + …………. + ⁿC₀ = 2ⁿ – 1.

(ix) The total number of combinations of (p + q + r + . . . .) things of which p things are alike of a first kind, q things are alike of a second kind r things are alike of a third kind and so on, taken any number at a time is [(p + 1) (q + 1) (r + 1) . . . . ] - 1.

● Binomial Theorem:

(i) Statement of Binomial Theorem : If n is a positive integer then

(a + x)n = an + nC1 an - 1 x + nC2 an - 2 x2 + …………….. + nCr an - r xr + ………….. + xn …….. (1)

(ii) If n is not a positive integer then

(1 + x)n = 1 + nx + [n(n - 1)/2!] x2 + [n(n - 1)(n - 2)/3!] x3 + ………… + [{n(n-1)(n-2)………..(n-r+1)}/r!] xr+ ……………. ∞ (-1 < x < 1) ………….(2)

(iii) The general term of the expansion (1) is (r+ 1)th term

= tr + 1 = nCr an - r xr

(iv) The general term of the expansion (2) is (r + 1) th term

= tr + 1 = [{n(n - 1)(n - 2)....(n - r + l)}/r!] ∙ xr.

(v) There is one middle term is the expansion ( 1 ) when n is even and it is (n/2 + 1)th term ; the expansion ( I ) will have two middle terms when n is odd and they are the {(n - 1)/2 + 1} th and {(n - 1)/2 + 1} th terms.

(vi) (1 - x)-1 = 1 + x + x2 + x3 + ………………….∞.

(vii) (1 + x)-1 = I - x + x2 - x3 + ……………∞.

(viii) (1 - x)-2 = 1 + 2x + 3x2 + 4x3 + . . . . ∞ .

(ix) (1 + x)-2 = 1 - 2x + 3x2 - 4x3 + . . . . ∞ .



● Logarithm:

(i) If ax = M then loga M = x and conversely.

(ii) loga 1 = 0.

(iii) loga a = 1.

(iv) a logam = M.

(v) loga MN = loga M + loga N.

(vi) loga (M/N) = loga M - loga N.

(vii) loga Mn = n loga M.

(viii) loga M = logb M x loga b.

(ix) logb a x 1oga b = 1.

(x) logb a = 1/logb a.

(xi) logb M = logb M/loga b.





● Exponential Series:

(i) For all x, ex = 1 + x/1! + x2/2! + x3/3! + …………… + xr/r! + ………….. ∞.

(ii) e = 1 + 1/1! + 1/2! + 1/3! + ………………….. ∞.

(iii) 2 < e < 3; e = 2.718282 (correct to six decimal places).

(iv) ax = 1 + (loge a) x + [(loge a)2/2!] ∙ x2 + [(loge a)3/3!] ∙ x3 + …………….. ∞.



● Logarithmic Series:

(i) loge (1 + x) = x - x2/2 + x3/3 - ……………… ∞ (-1 < x ≤ 1).

(ii) loge (1 - x) = - x - x2/ 2 - x3/3 - ………….. ∞ (- 1 ≤ x < 1).

(iii) ½ loge [(1 + x)/(1 - x)] = x + x3/3 + x5/5 + ……………… ∞ (-1 < x < 1).

(iv) loge 2 = 1 - 1/2 + 1/3 - 1/4 + ………………… ∞.

(v) log10 m = µ loge m where µ = 1/loge 10 = 0.4342945 and m is a positive number.

Formula



11 and 12 Grade Math

From Basic Math Formulas to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More