Area and Perimeter of the Triangle


Here we will discuss about the area and perimeter of the triangle.

If a, b, c are the sides of the triangle, then the perimeter of triangle = (a + b + c) units.

Area of the triangle = √(s(s - a) (s - h) (s - c)) 

The semi-perimeter of the triangle, s = (a + b + c)/2

In a triangle if 'b' is the base and h is the height of the triangle then

Area of triangle = 1/2 × base × height

Similarly,

area and perimeter of the triangle



                              1/2 × AC × BD                              1/2 × BC × AD

 Base of the triangle = (2 Area)/height 

 Height of the triangle = (2 Area)/base 


Area of right angled triangle

 If a represents the side of an equilateral triangle, then its area = (a²√3)/4 

perimeter of an equilateral triangle


Area of right angled triangle

A = 1/2 × BC × AB

   = 1/2 × b × h

area of right angled triangle



Worked-out examples on area and perimeter of the triangle:

1. Find the area and height of an equilateral triangle of side 12 cm. (√3 = 1.73).

Solution: 

Area of the triangle = \(\frac{√3}{4}\) a² square units 

= \(\frac{√3}{4}\) × 12 × 12 

= 36√3 cm²

= 36 × 1.732 cm² 

= 62.28 cm²

Height of the triangle = \(\frac{√3}{2}\) a units

= \(\frac{√3}{2}\) × 12 cm 

= 1.73 × 6 cm 

= 10.38 cm 



2. Find the area of right angled triangle whose hypotenuse is 15 cm and one of the sides is 12 cm. 

Solution: 

AB² = AC² - BC² 

       = 15² - 12² 

       = 225 - 144

        = 81

Therefore, AB = 9

Therefore, area of the triangle = ¹/₂ × base × height

                                                 = ¹/₂ × 12 × 9 

                                                 = 54 cm²


3. The base and height of the triangle are in the ratio 3 : 2. If the area of the triangle is 243 cm² find the base and height of the triangle. 

Solution: 

Let the common ratio be x 

Then height of triangle = 2x 

And the base of triangle = 3x

Area of triangle = 243 cm²

Area of triangle = 1/2 × b × h 243 = 1/2 × 3x × 2x 

⇒ 3x² = 243

⇒ x² = 243/3

⇒ x = √81

⇒ x = √(9 × 9) 

⇒ x = √9

Therefore, height of triangle = 2 × 9 

                                             = 18 cm 

Base of triangle = 3x 

                          = 3 × 9 

                          = 27 cm



4. Find the area of a triangle whose sides are 41 cm, 28 cm, 15 cm. Also, find the length of the altitude corresponding to the largest side of the triangle. 

Solution: 

Semi-perimeter of the triangle = (a + b + c)/2

                                                 = (41 + 28 + 15)/2 

                                                 = 84/2 

                                                 = 42 cm

Therefore, area of the triangle = √(s(s - a) (s - b) (s - c)) 

                                                 = √(42 (42 - 41) (42 - 28) (42 - 15)) cm²

                                                 = √(42 × 1 × 27 × 14) cm²

                                                 = √(3 × 3 × 3 × 3 × 2 × 2 × 7 × 7) cm²

                                                 = 3 × 3 × 2 × 7 cm²

                                                 = 126 cm²

Now, area of triangle = 1/2 × b × h 

Therefore, h = 2A/b

                     = (2 × 126)/41

                     = 252/41

                     = 6.1 cm



More solved examples on area and perimeter of the triangle:


5. Find the area of a triangle, two sides of which are 40 cm and 24 cm and the perimeter is 96 cm.

Solution:

Since, the perimeter = 96 cm

a = 40 cm, b = 24 cm

Therefore, C = P - (a + b)

                     = 96 - (40 + 24)

                     = 96 - 64

                     = 32 cm

Therefore, S = (a + b + c)/2

                     = (32 + 24 + 40)/2

                     = 96/2

                     = 48 cm

Therefore, area of triangle = √(s(s - a) (s - b) (s - c))

                                           = √(48 (48 - 40) (48 - 24) (48 - 32))

                                           = √(48 × 8 × 24 × 16 )

                                           = √(2 × 2 × 2 × 2 × 3 × 2 × 2 × 2 × 2 × 2 × 2 × 3 × 2 × 2 × 2 × 2)

                                           = 3 × 2 × 2 × 2 × 2 × 2 × 2 × 2

                                           = 384 cm²



6. The sides of the triangular plot are in the ratio 2 : 3 : 4 and the perimeter is 180 m. Find its area.

Solution:

Let the common ratio be x,

then the three sides of triangle are 2x, 3x, 4x

Now, perimeter = 180 m

Therefore, 2x + 3x + 4x = 180

⇒ 9x = 180

⇒ x = 180/9

⇒ x = 20

Therefore, 2x = 2 × 20 = 40

3x = 3 × 20 = 60

4x = 4 × 20 = 80

Area of triangle = √(s(s - a) (s - b) (s - c))

                          = √(90(90 - 80) (90 - 60) (90 - 40))

                          = √(90 × 10 × 30 × 50))

                          = √(3 × 3 × 2 × 5 × 2 × 5 × 3 × 2 × 5 × 5 × 5 × 2)

                          = 3 × 2 × 5 × 2 × 5 √(3 × 5)

                          = 300 √15 m²

                          = 300 × 3.872 m²

                          = 1161.600 m²

                          = 1161.6 m²

The above explanation on area and perimeter of the triangle are explained using step-by-step solution.


● Mensuration

Area and Perimeter

Perimeter and Area of Rectangle

Perimeter and Area of Square

Area of the Path

Area and Perimeter of the Triangle

Area and Perimeter of the Parallelogram

Area and Perimeter of Rhombus

Area of Trapezium

Circumference and Area of Circle

Units of Area Conversion

Practice Test on Area and Perimeter of Rectangle

Practice Test on Area and Perimeter of Square


 Mensuration - Worksheets

Worksheet on Area and Perimeter of Rectangles

Worksheet on Area and Perimeter of Squares

Worksheet on Area of the Path

Worksheet on Circumference and Area of Circle

Worksheet on Area and Perimeter of Triangle











7th Grade Math Problems

8th Grade Math Practice

From Area and Perimeter of the Triangle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Money | Conversion of Money from Rupees to Paisa

    Dec 03, 24 01:29 AM

    Worksheet on Money
    Practice the questions given in the worksheet on money. This sheet provides different types of questions where students need to express the amount of money in short form and long form

    Read More

  2. 2nd Grade Money Worksheet | Conversion of Money | Word Problems

    Dec 03, 24 01:19 AM

    Match the following Money
    In 2nd grade money worksheet we will solve the problems on writing amount in words and figures, conversion of money and word problems on money. 1. Write T for true and F for false. (i) Rs. is written…

    Read More

  3. Subtraction of Money | Subtraction with Conversion, without Conversion

    Dec 02, 24 01:47 PM

    Subtraction of Money
    In subtraction of money we will learn how to subtract the amounts of money involving rupees and paise to find the difference. We carryout subtraction with money the same way as in decimal numbers. Whi…

    Read More

  4. Word Problems on Addition of Money |Money Word Problems|Money Addition

    Dec 02, 24 01:26 PM

    Word Problems on Addition of Money
    Let us consider some of the word problems on addition of money. We have solved the problems in both the methods i.e., with conversion into paise and without conversion into paise. Worked-out examples

    Read More

  5. Addition of Money | Add The Amounts of Money Involving Rupees & Paisa

    Nov 29, 24 01:26 AM

    3rd Grade Addition of Money
    In addition of money we will learn how to add the amounts of money involving rupees and paisa together. We carryout with money the same way as in decimal numbers. While adding we need to follow that t…

    Read More