We will learn how to prove the property of the inverse trigonometric function arctan(x) + arctan(y) = arctan(\(\frac{x + y}{1 - xy}\)), (i.e., tan\(^{-1}\) x + tan\(^{-1}\) y = tan\(^{-1}\) (\(\frac{x + y}{1 - xy}\)) if x > 0, y > 0 and xy < 1.
1. Prove that arctan(x) + arctan(y) = arctan(\(\frac{x + y}{1 - xy}\)), if x > 0, y > 0 and xy < 1.
Proof:
Let, tan\(^{-1}\) x = α and tan\(^{-1}\) y = β
From tan\(^{-1}\) x = α we get,
x = tan α
and from tan\(^{-1}\) y = β we get,
y = tan β
Now, tan (α + β) = (\(\frac{tan
α + tan β}{1 - tan α tan β}\))
tan (α + β) = \(\frac{x + y}{1 - xy}\)
⇒ α + β = tan\(^{-1}\) (\(\frac{x + y}{1 - xy}\))
⇒ tan\(^{-1}\) x + tan\(^{-1}\) y = tan\(^{-1}\) (\(\frac{x + y}{1 - xy}\))
Therefore, tan\(^{-1}\) x + tan\(^{-1}\) y = tan\(^{-1}\) (\(\frac{x + y}{1 - xy}\)), if x > 0, y > 0 and xy < 1.
2. Prove that arctan(x) + arctan(y) = π + arctan(\(\frac{x + y}{1 - xy}\)), if x > 0, y > 0 and xy > 1. And
arctan(x) + arctan(y) = arctan(\(\frac{x + y}{1 - xy}\)) - π, if x < 0, y < 0 and xy > 1.
Proof: If x > 0, y > 0 such that xy > 1, then \(\frac{x + y}{1 - xy}\) is positive and therefore, \(\frac{x + y}{1 - xy}\) is positive angle between 0° and 90°.
Similarly, if x < 0, y < 0 such that xy > 1, then \(\frac{x + y}{1 - xy}\) is positive and therefore, tan\(^{-1}\) (\(\frac{x + y}{1 - xy}\)) is a negative angle while tan\(^{-1}\) x + tan\(^{-1}\) y is a positive angle while tan\(^{-1}\) x + tan\(^{-1}\) y is a non-negative angle. Therefore, tan\(^{-1}\) x + tan\(^{-1}\) y = π + tan\(^{-1}\) (\(\frac{x + y}{1 - xy}\)), if x > 0, y > 0 and xy > 1 and
arctan(x) + arctan(y) = arctan(\(\frac{x + y}{1 - xy}\)) - π, if x < 0, y < 0 and xy > 1.
Solved examples on property of inverse circular function tan\(^{-1}\) x + tan\(^{-1}\) y = tan\(^{-1}\) (\(\frac{x + y}{1 - xy}\))
1. Prove that 4 (2 tan\(^{-1}\) \(\frac{1}{3}\) + tan\(^{-1}\) \(\frac{1}{7}\)) = π
Solution:
2 tan\(^{-1}\) \(\frac{1}{3}\)
= tan\(^{-1}\) \(\frac{1}{3}\) + tan\(^{-1}\) \(\frac{1}{3}\)
= tan\(^{-1}\) (\(\frac{\frac{1}{3} + \frac{1}{3}}{1 - \frac{1}{3} • \frac{1}{3}}\))
= tan\(^{-1}\) \(\frac{3}{4}\)
Now L. H. S. = 4 (2 tan\(^{-1}\) \(\frac{1}{3}\) + tan\(^{-1}\) \(\frac{1}{7}\))
= 4 (tan\(^{-1}\) \(\frac{3}{4}\) + tan\(^{-1}\) \(\frac{1}{7}\))
= 4 tan\(^{-1}\) (\(\frac{\frac{3}{4} + \frac{1}{7}}{1 - \frac{3}{4} • \frac{1}{7}}\))
= 4 tan\(^{-1}\) (\(\frac{25}{28}\) x \(\frac{28}{25}\))
= 4 tan\(^{-1}\) 1
= 4 · \(\frac{π}{4}\)
= π = R.H.S. Proved.
2. Prove that, tan\(^{-1}\) \(\frac{1}{4}\) + tan\(^{-1}\) \(\frac{2}{9}\) + tan\(^{-1}\) \(\frac{1}{5}\) + tan\(^{-1}\) \(\frac{1}{8}\) = π/4.
Solution:
L. H. S. = tan\(^{-1}\) \(\frac{1}{4}\) + tan\(^{-1}\) \(\frac{2}{9}\) + tan\(^{-1}\) \(\frac{1}{5}\) + tan\(^{-1}\) \(\frac{1}{8}\)
= tan\(^{-1}\) \(\frac{\frac{1}{4} + \frac{2}{9}}{1 - \frac{1}{4} • \frac{2}{9}}\) + tan\(^{-1}\) \(\frac{\frac{1}{5} + \frac{1}{8}}{1 - \frac{1}{5} • \frac{1}{8}}\)
= tan\(^{-1}\) (\(\frac{17}{36}\) x \(\frac{36}{34}\)) + tan\(^{-1}\) (\(\frac{13}{40}\) x \(\frac{40}{39}\))
= tan\(^{-1}\) \(\frac{1}{2}\) + tan\(^{-1}\) \(\frac{1}{3}\)
= tan\(^{-1}\) \(\frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} • \frac{1}{3}}\)
= tan\(^{-1}\) 1
= \(\frac{π}{4}\) = R. H. S. Proved.
● Inverse Trigonometric Functions
11 and 12 Grade Math
From arctan x + arctan y to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Jan 14, 25 11:09 PM
Jan 14, 25 11:02 PM
Jan 14, 25 01:57 PM
Jan 14, 25 12:29 AM
Jan 14, 25 12:21 AM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.