We will learn how to prove the property of the inverse trigonometric function arctan(x) + arctan(y) + arctan(z) = arctan\(\frac{x + y + z - xyz}{1 - xy - yz - zx}\) (i.e., tan\(^{-1}\) x + tan\(^{-1}\) y + tan\(^{-1}\) z = tan\(^{-1}\) \(\frac{x + y + z - xyz}{1 - xy - yz - zx}\))
Prove that, tan\(^{-1}\) x + tan\(^{-1}\) y + tan\(^{-1}\) z = tan\(^{-1}\) \(\frac{x + y + z – xyz}{1 – xy – yz – zx}\)
Proof :
Let, tan\(^{-1}\) x = α, tan\(^{-1}\) y = β and tan\(^{-1}\)γ
Therefore, tan α = x, tan β = y and tan γ = z
We know that, tan (α + β + γ) = \(\frac{tan α + tan β + tan γ - tan α tan β tan γ}{1 - tan α tan β - tan β tan γ - tan γ tan α}\)
tan (α + β + γ) = \(\frac{x + y + z – xyz}{1 – xy – yz – zx}\)
α + β + γ = tan\(^{-1}\) \(\frac{x + y + z – xyz}{1 – xy – yz – zx}\)
or, tan\(^{-1}\) x + tan\(^{-1}\) y + tan\(^{-1}\) z = tan\(^{-1}\) \(\frac{x + y + z – xyz}{1 – xy – yz – zx}\). Proved.
Second method:
We can prove tan\(^{-1}\) x + tan\(^{-1}\) y + tan\(^{-1}\) z = tan\(^{-1}\) \(\frac{x + y + z – xyz}{1 – xy – yz – zx}\) in other way.
We know that, tan\(^{-1}\) x + tan\(^{-1}\) y = tan\(^{-1}\) \(\frac{x + y}{1 – xy}\)
Therefore, tan\(^{-1}\) x + tan\(^{-1}\) y + tan\(^{-1}\) z = tan\(^{-1}\) \(\frac{x + y}{1 – xy}\) + tan\(^{-1}\) z
tan\(^{-1}\) x + tan\(^{-1}\) y + tan\(^{-1}\) z = tan\(^{-1}\) \(\frac{\frac{x + y}{1 – xy} + z}{1 - \frac{x + y}{1 - xy } ∙ z}\)
tan\(^{-1}\) x + tan\(^{-1}\) y + tan\(^{-1}\) z = tan\(^{-1}\) \(\frac{x + y + z – xyz}{1 – xy – yz – zx}\). Proved.
● Inverse Trigonometric Functions
11 and 12 Grade Math
From arctan(x) + arctan(y) + arctan(z) to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Jan 15, 25 12:08 AM
Jan 14, 25 11:53 PM
Jan 14, 25 11:02 PM
Jan 14, 25 01:57 PM
Jan 14, 25 12:29 AM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.