We will learn how to prove the property of the inverse trigonometric function arctan(x) - arctan(y) = arctan(\(\frac{x - y}{1 + xy}\)) (i.e., tan\(^{-1}\) x - tan\(^{-1}\) y = tan\(^{-1}\) (\(\frac{x - y}{1 + xy}\)))
Proof:
Let, tan\(^{-1}\) x = α and tan\(^{-1}\) y = β
From tan\(^{-1}\) x = α we get,
x = tan α
and from tan\(^{-1}\) y = β we get,
y = tan β
Now, tan (α - β) = (\(\frac{tan
α - tan β}{1 + tan α tan β}\))
tan (α - β) = \(\frac{x - y}{1 + xy}\)
⇒ α - β = tan\(^{-1}\) (\(\frac{x - y}{1 + xy}\))
⇒ tan\(^{-1}\) x - tan\(^{-1}\) y = tan\(^{-1}\) (\(\frac{x - y}{1 + xy}\))
Therefore, tan\(^{-1}\) x - tan\(^{-1}\) y = tan\(^{-1}\) (\(\frac{x - y}{1 + xy}\))
Solved examples on property of inverse circular function arctan(x) - arctan(y) = arctan(\(\frac{x - y}{1 + xy}\))
Solve the inverse trigonometric function: 3 tan\(^{-1}\) 1/2 + √3 - tan\(^{-1}\) 1/x = tan\(^{-1}\) 1/3
Solution:
We know that, tan 15° = tan (45° - 30°)
⇒ tan 15° = \(\frac{tan 45° - tan 30°}{1 + tan 45° tan 30°}\)
⇒ tan 15° = \(\frac{1 - \frac{1}{√3}}{1 + \frac{1}{√3}}\)
⇒ tan 15° = \(\frac{√3 - 1}{√3 + 1}\)
⇒ tan 15° = \(\frac{(√3 - 1)(√3 + 1)}{(√3 + 1)(√3 + 1)}\)
⇒ tan 15° = \(\frac{3 - 1}{4 + 2√3}\)
⇒ tan 15° = \(\frac{1}{2 + √3}\)
⇒ tan\(^{-1}\) (\(\frac{1}{2 + √3}\)) = 15°
⇒ tan\(^{-1}\) (\(\frac{1}{2 + √3}\)) = \(\frac{π}{12}\)
Therefore, from the given equation we get,
3 tan\(^{-1}\) \(\frac{1}{2 + √3}\) - tan\(^{-1}\) \(\frac{1}{x}\) = tan\(^{-1}\) \(\frac{1}{3}\)
⇒ 3 · \(\frac{π}{12}\) - tan\(^{-1}\) \(\frac{1}{x}\) = tan\(^{-1}\) \(\frac{1}{3}\)
⇒ - tan\(^{-1}\) \(\frac{1}{x}\) = tan\(^{-1}\) \(\frac{1}{3}\) - \(\frac{π}{4}\)
⇒ tan\(^{-1}\) \(\frac{1}{x}\) = tan\(^{-1}\) 1 - tan\(^{-1}\) \(\frac{1}{3}\) [Since, \(\frac{π}{4}\) = tan\(^{-1}\) 1]
⇒ tan\(^{-1}\) \(\frac{1}{x}\) = tan\(^{-1}\) \(\frac{1 - \frac{1}{3}}{1 + 1 • \frac{1}{3}}\)
⇒ tan\(^{-1}\) \(\frac{1}{x}\) = tan\(^{-1}\) ½
⇒ \(\frac{1}{x}\) = ½
⇒ x = 2
Therefore, the required solution is x = 2.
● Inverse Trigonometric Functions
11 and 12 Grade Math
From arctan x - arctan y to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Nov 20, 24 01:00 PM
Nov 20, 24 12:50 AM
Nov 20, 24 12:16 AM
Nov 18, 24 02:23 PM
Nov 17, 24 10:29 PM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.